美國在醫療費用的支出常常超乎預期,其中處方藥之花費就佔了相當大的比例。為了減少醫療費用支出,並讓藥物之價格更為透明,加州州長傑瑞布朗(Jerry Brown)在2017年10月9日簽署了第17號法案(藥價透明化法案),要求藥物製造商若要調高處方藥價格超過一定程度,則須事前通報給主管機關;該法預計於2018年10月1日生效。
藥價透明化法所稱之處方藥(prescription drugs),包含學名藥、原廠藥或特種藥品。本法之主管機關為「加州衛生計畫與發展辦公室」(Office of Statewide Health Planning and Development, OSHPD),掌管本法之執行並對違規製造商處罰民事罰款,本法案施行之相關細節亦由OSHPD訂定。OSHPD依據本法所得之罰款或收入,將全數交給「照護管理基金」(Managed Care Fund)做運用。
依據藥價透明化法規定,處方藥製造商對於其處方藥產品若欲調高產品公告目錄價(Wholesale Acquisition Cost, WAC)超過40美元/療程之漲幅者,須將處方藥漲幅、漲價原因、藥品使用情況或市場等資訊,以「季」為單位,至少於漲價生效60天前通報給加州衛生計畫與發展辦公室。若該藥品為新產品,其WAC超過「醫療保險處方藥物改良和更新法」(Medicare Prescription Drug, Improvement, and Modernization Act)所定之價格區間者,須於新產品上市後3天內通報給OSHPD。
OSHPD在收到處方藥製造商的通報資訊後,則須依法將資訊公開於其網站上。
5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。 白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。 此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。
零工經濟(Gig Economy)近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。 面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。 國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。
因應ChatGPT人工智慧趨勢,為企業提出營業秘密管理建議2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
新加坡金融管理局發布《資料治理與管理實務》資訊文件新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。