國有研發設施開放近用之法制規範研析-以美日韓規定為核心

刊登期別
第29卷,第4期,2017年04月
 
隸屬計畫成果
產業科技創新之法制建構計畫
 

本文為「經濟部產業技術司科技專案成果」

※ 國有研發設施開放近用之法制規範研析-以美日韓規定為核心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7902&no=16&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
Facebook 捲入商標糾紛

  Facebook公司因使用「timeline」一詞,而被設立於芝加哥的Timelines公司提商標侵權訴訟乙案,目前Facebook公司正積極準備進一步之辯護。   Timelines公司係於2011年9月控告Facebook侵害其所有之「timeline」商標權,且違反公平競爭法。Facebook則反訴Timelines公司,主張「timeline」為一般通用名稱,應不受商標法保護,故請求確認該商標無效且無侵權事實。   美國地方法院先前裁定Facebook無法提出證據以證明Timelines公司之商標為一般通用名稱。而原定2013年4月22日在芝加哥聯邦法院開庭之上訴程序,目前已延期,但法院並未明確說明延期原因。   Facebook公司主張「timeline」是一種可使人群組織並展現對其最有意義的事件與活動之工具,其功用係將記憶呈現為依時序整理,且可查詢之個人記述。Timelines公司則為一個,可讓使用者記錄並分享歷史經歷的網站。   Facebook在線上廣告市場上仍有巨幅成長的機會,因其具有廣泛的使用者基礎,且有跨時追蹤個人細節之能力,故在線上廣告市場中成為一股令人望之生畏的強大力量。   據報導,若將來判決對Timelines公司有利,則其打算請求總金額相當於Facebook因「timeline所取得之廣告收入」之損害賠償。由於至最終之審理結果出爐據信仍需要很長時間,故在現況下不排除庭外和解的可能性。

歐洲議會批准提升線上平台商業行為公平性之新規則

  有鑑於線上市集(如Google Play)、訂房網站等線上平台提供了迅速進入國際消費市場之機會, 因此成為了數百萬企業提供服務的首選之地。然而,存在於「平台對商家」(platform–to-business, P2B)之間的某些結構性問題,卻導致了企業之間的不公平交易行為。是以,歐洲議會、歐盟理事會與歐盟執委會於2019年2月14日就「提升線上中介服務商業用戶的公平性與透明性規則」(Regulation on promoting fairness and transparency for business users of online intermediation services),達成政治協議,歐洲議會並已於2019年4月17日批准。   該規則為全世界第一個針對線上平台與商業用戶訂定之規則,係數位單一市場策略(Digital Single Market Strategy)的一部分,預計適用於整個線上平台經濟,亦即,目前在歐盟境內營運的7000個線上平台或市集都包含在內,無論是科技巨擘,抑或是規模雖小但對商業用戶具重要議價能力的新創公司(small start-ups)皆屬之。此外,新規則中涉及搜尋結果排序透明度之部分,亦將適用於搜尋引擎。   其中,由於數以百萬計的中小企業是構成歐盟經濟的重要支柱,是以此番訂定的新規則,係專門針對此些較無議價能力的中小企業而設計。中小企業可自新規則中獲益之項目主要有四: 1. 禁止特定不公平行為 (1) 不得突然且未附理由的暫停帳號使用權 線上平台不得在無明確理由或未提供申訴可能性之情況下,暫停或終止賣家帳戶。 (2) 條款與條件需簡明易懂且變更時須提前通知 條款與條件需易於取得且以簡明易懂之文字書寫,當條款與條件有所變更時,線上平台需在15天之前通知,使賣家得即時調整業務,並可視業務調整複雜度適時延長通知期間。 2. 提升線上平台透明度 (1) 排序透明化 市集與搜尋引擎需揭露其排序商品或服務的主要參數,以利賣家進行適度優化。 (2) 強制揭露線上平台的部分商業行為 由於部分線上平台除了提供市集促進交易進行,更在該市集中身兼賣家之角色,是以,為維護公平競爭的環境,新規則強制此些線上平台全面揭露任何可能給予自家產品的優勢。此外,該等線上平台還需揭露所蒐集之資料及使用方式,尤其是與其他商業夥伴共享之資料。當涉及個人資料時,則有一般資料保護規則(General Data Protection Regulation, GDPR)之適用。 3. 增設爭端解決機制 (1) 建立投訴處理系統 線上平台應建立內部投訴處理系統以對商業用戶提供適當協助。 (2) 設置調解程序 線上平台應提供調解之協助,以助賣家在法庭外解決爭議,有效節省時間與金錢。 4. 規則之實施 商業公會能對違反規則之線上平台提起告訴,以降低賣家對平台報復行為的恐懼,並降低個別賣家的訴訟成本。   在歐洲議會批准後,一旦歐盟理事會同意,新規則將在公布後12個月後正式施行,且為了確保新規則與時俱進,歐盟將在適用後的18個月內進行檢視,並設立專門的線上平台觀測站(Online Platform Observatory),以監控市場的變化,並確保新規則有效施行。

英國歌手催生新的著作權法

  2006年12月7日星期四在金融時報全版的廣告上,知名歌手U2、Kaiser Chiefs與大約四千個樂團,共同連署呼籲英國政府支持修正英國的著作權法,延長音樂著作權的保護期限。 英國著作權法的保護期限目前規定為50年,較美國著作權保護期限95年短,許多音樂著作人怕在有生之年會失去他們的音樂著作權。因此,英國的唱片工業((BPI, British Phonographic Industry)已經進行推動修改英國著作權法,希望延長英國著作權法保護期限,但有政府智慧財產權意見書卻建議政府維持原本英國著作權法之規定。 政府智慧財產權意見書的作者,安德魯高爾說,延長音樂著作權的保護期限超過50年,只會有利於已經很有錢的少數知名巨星。 錄音製品播放版權有限公司的發言人,肯尼斯哈瑞斯表示,那些音樂著作人採取在廣告版面上表達他們的訴求,是因為他們關切得著作權議題,竟然不被重視,所以想用這項空前的舉動,來支持修正英國著作權法,延長著作權保護期限。 延長著作權期限的議題不僅僅只是對巨星高要求的特殊待遇,而是必須讓那些難以維持生計的音樂著作人能被法律公平的對待。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP