日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。

  新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。

  新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

相關連結
※ 日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7909&no=64&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

日本數位廳發布資料治理指引,協助企業運用資料提升企業價值

日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。

因應2020年社會實現自動駕駛,日本訂定自動駕駛制度整備大綱

  日本IT綜合戰略本部及官民資料活用推進本部於4月17日公佈「自動駕駛制度整備大綱」。大綱設定2020年至2025年間,日本社會實現自動駕駛下,所需檢討修正之關連法制度。   本大綱中,係以2020年實現自動駕駛至等級4為前提(限定場所、速度、時間等一定條件下為前提,系統獨自自動駕駛之情形),以在高速公路及部分地區之道路實現為條件設定。社會實現自動駕駛有以下課題需克服: 道路交通環境的整備:以自駕系統為行駛,一般道路因為環境複雜,常有無法預期狀況發生,導致自駕車的電腦系統無法對應。 確保整體的安全性:依據技術程度,設定一般車也能適用之行駛環境、設定車輛、自動駕駛之行駛環境條件以及人之互相配合,以達成與一般車相同之安全程度為方針下,由關係省廳間為合作,擬定客觀之指標。此一指標,並非全國一致,應就地方之特性,設定符合安全基準及自動駕駛行駛環境條件,建構整體確保安全之體制。 防止過度信賴自駕系統:訂定安全基準,使日本事件最先端自動車技術擴及於世界,訂定包含自駕系統安全性、網路安全等自動駕駛安全性要件指針。 事故發生時之法律責任:自動駕駛其相關人為駕駛人、系統製造商、道路管理者等多方面,其法律責任相對複雜化。現在係以被害人救濟觀點,至等級4為止之自動駕駛,適用自動車損害賠償責任險(強制責任險)方式,但是民法、刑法及行政法等法律全體之對應,仍為今後之課題,必須為早期快速處理。為了強化民事責任求償權行使、明確刑事責任之因果關係、並實現車輛安全性確保、避免所有人過度負擔等,車輛行駛紀錄器之裝置義務化、事故原因究明機制等,關係機關應合作為制度檢討。   本大綱最後並提出,在自動駕駛技術快速發展下,就其發展實際狀況應為持續半年1次召開會議檢討檢討。

美國通過基礎建設法案,加密貨幣之交易資訊應向國家稅務局申報

  於美國時間2021年11月15日,基礎建設法案(Infrastructure Investment and Jobs Act,以下稱基建法案)由美國總統拜登(Joe Biden)簽署後正式成為法律。依據白宮聲明,該法案旨在提供工作機會,改善港口與運輸以改善供應鏈,及其他關於美國基礎建設的投資等。此外該法案內容因涉及加密貨幣交易資訊申報議題,受到加密貨幣產業眾多矚目。   基建法案與加密貨幣產業有關者,主要是在美國國內稅收法典(Internal Revenue Code of 1986)第6050I與第6045條之既有規定中,分別將交易標的現金之定義新增數位資產(Digital Asset),及新增經紀商(Broker)之申報義務。所謂數位資產係以數位方式表彰一定價值,並透過加密保全的分散式帳本或其他類似技術所記錄之資產。經紀商認定範圍新增包括「關於任何為獲得報酬,而負責定期提供任何服務,代表他人實現數位資產轉移者」。法規生效後,任何價值超過10,000美元之交易訊息(諸如交易者姓名、社會安全號碼等資訊)應申報至美國國家稅務局(IRS),經紀商亦被要求申報其所經手交易至美國國家稅務局,新規範將適用於2023年12月31日後所應依法申報之文件。   區塊鏈技術去中心化的特性讓加密貨幣交易得以匿名化方式進行,然而新法一概將價值超過10,000美元的交易納入申報範圍。有論者認為,對於未建立身分驗證機制之小型平台業者、礦工以及散戶等經紀商或交易人,如何調整去匿名化之交易模式以遵循申報義務之法令,將是一大挑戰。綜上,新規範揭示政府將深化對於加密貨幣產業之監管,如何兼顧交易自由與交易秩序,將考驗著監管當局及業者之智慧。

TOP