日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。

  新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。

  新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

相關連結
※ 日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7909&no=64&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
美國聯邦通訊委員會修改廣播電視業者對於兒童關看電視的保護義務

  美國聯邦通訊委員會( The Federal Communications Commission /FCC )在 2006 年 9 月,修改並解釋 2004 年一項課與廣播電視業者對兒童觀看電視保護義務之指令。在 2004 年提出的指令中對廣播電視業者有許多規定,包括:電視業者被要求提供兒童適當比例基準之核心( core )教育及資訊節目,並於該類型節目中全程播放中標示 E/I 的符號;允許在節目中出現網站網址,但限制兒童節目中顯示非與節目相關以及有商業目的之網站網址;原兒童節目之插播限制規定;以及修改所謂商業內容定義等。   這次對該指令的再修改,則是希望透過確保提供適當比例的兒童教育資訊節目、將廣告及其他兒童節目之行為納入商業內容定義,以及顯示網站網址之新限制規定,讓邁向數位化世界下之公眾利益能獲得保障。特別是在同時確保不過份削減廣播電視業者以及有線電視業者節目時間編排彈性下,保護兒童免於在廣播電視以及有線電視節目中,接收過多商業訊息。

美國聯邦上訴法院重新審理YOUTUBE的著作權侵害訴訟

  先前Viacom公司控告Youtube明知盜版剪輯影片而獲利一案,美國聯邦上訴巡迴法院決定重新審理。   2007年使用者將Viacom電視頻道的影片,像是MTV或是喜劇上傳到Youtube,這樣的影片剪輯超過上千片,Viacom主張由於Youtube縱容盜版的影片剪輯放在網站上來提高網站的聲望,所以Youtube是有意成為大量著作權侵害的幫兇,Viacom向Youtube求償超過一億元的損害。   依據1998年通過的數位千禧年法案,網路服務提供者在獲知有著作權侵害的內容後,只要迅速移除內容,則無需負擔使用者著作權侵害的責任。由於youtube在獲知有侵權內容時,已經及時將侵權內容移除,所以在2010年地方法院否決了Viacom的控告。   2012年4月5日聯邦巡迴上訴法院法官推翻地方法院的判決,並且說明合理陪審員(reasonable jury)可以發現Youtube實質上知道或是明確的意識到網站上有侵權的活動。   Google(Youtube的擁有者)發言人表示,侵權影片占youtube網站上的影片僅微小的比例,並且Youtube早已移除該侵權影片。但在Vaicom訴訟結束後,此項爭議卻開始攻擊Youtube。發言人繼續表示,此項決定並不影響Youtube的經營方式,Youtube將繼續作為全世界可以盡情自由表達的平台。

英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告

  英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。

馬來西亞通過修正《個人資料保護法》

馬來西亞個人資料保護委員會(Personal Data Protection commissioner,下稱個資保護委員會)於2023年度收受與個人資料(下稱個資)濫用、外洩相關申訴案件數量達779件,成長數量令人憂心。為確保對於個資保護規範能與國際標準發展同步,並加強個資遭洩漏時即時採取應變措施等相關政策,以解決前述憂心狀況,數位部(Ministry of Digital)於2024年7月10日提出《個人資料保護法》(Personal Data Protection Act 2010, PDPA)修正案,並於同年7月16日經下議院(Dewan Rakyat,馬來語直譯)表決通過。 本次PDPA修正重點包含: 1.設立個資保護官(data protection officer, DPO)制度:強制要求蒐集、處理、利用個資之資料控管者(data controller),及受資料控管者委託而實質處理個資之資料處理者(data processor),均需指派個資保護官。 2.擴張對於敏感性個資(sensitive personal data)定義:與個人身體、生理或行為特徵相關之技術處理所生個資(即生物辨識資料),皆屬之。 3.制訂個資外洩通報制度:強制要求發生個資外洩時須通報個資保護委員會,以及可能受到任何重大損害之個資當事人,惟對於「重大損害」尚未有明確定義。 4.導入資料可攜性:在遵守技術可行性(technical feasibility)與資料格式相容性(data format compatibility)之情境下,允許資料控管者之間在當事人要求下進行資料傳輸。 5.資料處理者的合規遵循義務:舊法僅要求資料控管者須遵守PDPA所規定的安全原則(security principle);新法則擴及要求資料處理者亦有安全原則之合規遵循義務。 6.提高罰則:舊法對於違反個資保護原則者,最高僅得處300,000馬幣和/或2年監禁;新法提高罰則最高得處1,000,000馬幣和/或最高3年監禁。 7.跨境傳輸規範修正:原則允許資料控管者將個資傳輸至馬來西亞以外,惟應採取適當措施確認及確保資料接收方保護個資之水準與馬來西亞個資法程度相當;並將跨境白名單制度調整為黑名單制度,不得傳輸至政府公布黑名單所列地區。 馬來西亞數位部本次修正PDPA,彰顯該國政府對個資保護之重視,惟關於任命個資保護官資格要求、個資外洩通報重大程度標準等細部規範,則仍須待修正案通過後,經個資保護委員會發布相關指引再行釐清。

TOP