Kroger成立於1883年,在美國擁有近3000家分店,為美國最大食品雜貨零售店,其註冊商標“Private Selection”相當知名,被廣泛使用在超市、便利商店及其他各種零售商店約20多年。然而在全球擁有超過10000家分店的歐洲零售店巨頭Lidl,亦於2016年9月19日於美國註冊與“Private Selection”近似的商標“Preferred Selection”。
對此,Kroger於Lidl在美國開立新門市不久之後,即於今(2017)年6月30日對Lidl起訴,主張Lidl的“Preferred Selection”與Kroger的“Private Selection”品牌商標太相似,Lidl於德國是以低價折扣作定位之連鎖超市,且產品曾被認定為劣質。Lidl的行為意圖混淆“Preferred Selection”與“Private Selection”,將稀釋Kroger的品牌知名度,不僅侵害商標亦將損及商譽,甚至從中牟取不當利益,導致不公平競爭。故Kroger據以向美國維吉尼亞州地方法院請求禁止Lidl販售使用“Preferred Selection”商標的產品。
Lidl反駁認為其商標註冊已有一段時間,Kroger卻故意選其展店亮相後才大肆攻擊Lidl的新品牌,嚴重干擾Lidl的宣傳效益,更何況兩者商標名稱不同,標誌圖形的設計也不同。今年7月25日,美國維吉尼亞州地方法院法官表示,儘管品牌標誌看起來相似,但兩者並無相同或相似的含意,拒絕授予Kroger聲請之禁令。惟兩造於今年9月達成協議,請求法院駁回訴訟,而Lidl最終於今年9月12日放棄“Preferred Selection”商標權。
日本內閣府在2020年7月17日發布「2020年統合創新戰略(統合イノベーション戦略2020,下稱創新戰略2020)」政策文件。創新戰略為內閣府轄下綜合科學技術與創新會議(総合科学技術・イノベーション会議)依據日本科學技術基本計畫,自2018年起固定於每年度發布。其目的係自全球性的觀點出發,提出含括科研創新之基礎研究至應用端的整體性策略。本年度創新戰略著眼於COVID-19疫情流行與世界各地大規模災害頻仍下,日本科研與創新政策所面臨的課題以及應採取的對策,並擴大科研領域,納入人文社會科學。 創新戰略2020指出,因COVID-19疫情影響,醫療體系、社經生活與研發活動皆受到程度不等的衝擊,包含零接觸經濟興起、社交方式改變與實體研究室關閉等。與此同時,美中科技對抗、GAFA數位壟斷爭議、極端氣候與天然災害等國內外情勢變遷快速。在此背景下,日本的首要課題為建構不間斷且強韌的醫療、教育、公共事業等社會服務體系,維繫國內外社會的鏈結。為此,應透過加速數位化,促成創新活動,同時強化研發能量,實現以人為本的「Society5.0」之社會。 基此,創新戰略2020提出了以下四項具體對策: (1)建立足以應對疫情困境、具韌性的社會經濟體系:在公衛醫療體系,進行疫苗與醫療儀器之研發,並運用數位科技傳遞訊息;因應科研創新與產學合作受疫情影響停擺,給予及時資助,如培育年輕創業者、提供推動引導研發補助(開発研究促進助成金,通稱Gap Fund)等;推動教育、研究、物流等各領域的數位化,同時自經濟安全保障的觀點,強化供應鏈韌性。 (2)創新創造:透過官民合作,實踐智慧城市的構想;同時持續推動「STI for SDGs路線圖(STI for SDGsロードマップ)」政策;藉由實踐研究誠信(研究インテグリティ),加強與國際網路合作;另一方面,應發展post 5G與Beyond 5G等前瞻數位基礎技術,並持續建置各領域的資料流通基礎設施。 (3)強化科研與創新之研究能量:建立能充分吸引年輕人才挑戰、進行創新研發的研究環境,同時成立基金以建構世界級的研究基礎設施;以充分活用大學研發成果為目標,檢討智財制度發展的願景;結合人文社會科學領域研究,並活用射月型研發(ムーンショット型研究開発)制度,發展社會問題解決方案。 (4)重要科技發展項目:於基礎技術層次,包含AI、生化科技、量子技術、材料等,對此應優先投入研發、培育相關人才;於應用科學層次,則包含防災、防疫、資安、能源、健康醫療、航太、糧食、農漁產業等。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
歐盟執委會提出人工智慧創新計畫,促進歐盟人工智慧技術應用與相關企業發展2024年1月24日,歐盟執委會(European Commission)推出了人工智慧創新計畫(AI innovation package),支持新創公司和中小企業開發符合歐盟價值觀的人工智慧。該計畫包含以下重要事項: 1.推動歐洲高效能運算聯盟相關之法規修正案(An amendment of the EuroHPC Regulation)。 (1)歐洲高效能運算聯盟是歐盟在2018年依法(Council Regulation (EU) 2021/1173)建立之組織。依該法內容,組織主要目標是在歐盟開發、部署具有極高運算能力的運算系統,為公部門和私人提供強大的運算和資料服務,以支持科學和工業的雙重轉型。 (2)本次法規修正案為歐洲高效能運算聯盟添加了新目標,新目標為建立人工智慧工廠,以促進歐盟對人工智慧的採用和創新。目標細節包含令歐盟取得、推廣人工智慧專用的超級電腦,建立一站式服務以支持歐盟各界開發人工智慧服務、產品及應用程式等。 2.在歐盟執委會下設立人工智慧辦公室,制定歐洲層級的人工智慧政策,並監督政策執行。 3.透過跨國論壇推動以下工作: (1)藉歐洲地平線計畫、數位歐洲計畫,向試圖開發、應用人工智慧的組織提供財政支援。預估將在2027年帶來四十億歐元投資額。 (2)過教育擴張人工智慧人才庫。 (3)鼓勵政府及民眾投資人工智慧新創企業。 (4)加速開發歐洲共同資料空間,供人工智慧社群使用。 (5)支持工業生態系統及公共部門應用人工智慧。應用領域包含機器人、健康、生物技術、製造、行動設備等。 4.歐盟執委會與部分成員國組織了兩個歐洲數位基礎設施聯盟如下: (1)語言科技聯盟(ALT-EDIC): 該聯盟主要工作之一為收集、開發歐洲各國語言模型,供公共部門、企業及未來人工智慧創新計畫使用。聯盟目標為增加歐洲語言資料可用性、維護歐洲語言及文化的多樣性。 (2)城市宇宙聯盟(CitiVERSE EDIC): 主要目標之一是支援城市利用人工智慧,優化各項管理流程。例如交通管理方面,可利用人工智慧模擬空氣品質變化對城市交通狀況的影響,以利政府提出相應解決方案。 目前人工智慧創新計畫的下一步,是先推動歐洲高效能運算聯盟相關之法規修正案。嗣後,透過執行該計畫各項內容,執委會將為歐盟人工智慧政策的實施做好準備。執行該計畫的過程中執委會不僅會支援歐盟各國公共部門採用人工智慧,也會積極推動民間開發、應用人工智慧技術,以提升歐盟競爭力和促進歐盟的永續發展。
「環境科技、環境政策與貿易」專題連載(3):環保標章、環境商品市場拓展與貿易