Kroger成立於1883年,在美國擁有近3000家分店,為美國最大食品雜貨零售店,其註冊商標“Private Selection”相當知名,被廣泛使用在超市、便利商店及其他各種零售商店約20多年。然而在全球擁有超過10000家分店的歐洲零售店巨頭Lidl,亦於2016年9月19日於美國註冊與“Private Selection”近似的商標“Preferred Selection”。
對此,Kroger於Lidl在美國開立新門市不久之後,即於今(2017)年6月30日對Lidl起訴,主張Lidl的“Preferred Selection”與Kroger的“Private Selection”品牌商標太相似,Lidl於德國是以低價折扣作定位之連鎖超市,且產品曾被認定為劣質。Lidl的行為意圖混淆“Preferred Selection”與“Private Selection”,將稀釋Kroger的品牌知名度,不僅侵害商標亦將損及商譽,甚至從中牟取不當利益,導致不公平競爭。故Kroger據以向美國維吉尼亞州地方法院請求禁止Lidl販售使用“Preferred Selection”商標的產品。
Lidl反駁認為其商標註冊已有一段時間,Kroger卻故意選其展店亮相後才大肆攻擊Lidl的新品牌,嚴重干擾Lidl的宣傳效益,更何況兩者商標名稱不同,標誌圖形的設計也不同。今年7月25日,美國維吉尼亞州地方法院法官表示,儘管品牌標誌看起來相似,但兩者並無相同或相似的含意,拒絕授予Kroger聲請之禁令。惟兩造於今年9月達成協議,請求法院駁回訴訟,而Lidl最終於今年9月12日放棄“Preferred Selection”商標權。
美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃: 一、 使用者與社會的保護: 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。 二、 保障市場效率: 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。 三、 促進與協調各方合作: 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。
日本內閣府公布知的財產推進計畫2019日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸: 脫平均:依不同個體特性培養頂尖人材,促進新領域之挑戰及創造。以經產省、文科省、總務省、法務省為主責部會,實施包括培養具出色創造能力之人材、提供新創之後備資源、強化盜版因應對策、EdTech(教育科技)之活用、蒐集「STEAM教育」事例等策略。 融合:透過融合不同特性之分散個體,達成加速創新之作用。以經產省、文科省、法務省、厚生省、農林水產省、公正取引委員會為主責部會,實施包括創建智財資產平台、建構有助於AI及資料創作的相關規範等策略。另外修正資料信託認定方案的相關指針、提出資料銀行相關典範案例亦為重點。 共感:以經產省、總務省、外務省、文科省為主責部會,創造價值實現之友善環境,實施包括強化Cool Japan政策、籌劃音樂著作權利資訊資料庫、規劃能對應跨境傳輸之外語Metadata,協助將日本音樂推向海外市場等策略。 綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。
美國「刑事鑑識演算法草案」美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。
加州消費者隱私保護法修正法案重點說明隨著個人資料保護意識的興起,各國也持續增修法律來保護人民權益以及協調產業標準,但這變動的過程會對本來就複雜的法律結構帶來更多挑戰。 如美國同時會有聯邦法與州法兩個層次的法律,當兩者分別發展隱私權相關法律規範時,難免會缺乏協調,出現定義不明的重疊規範,進而提高企業之法令遵循成本與管理成本。最終導致的結果,就是非必要地降低了產業發展速度,以及提高了消費者獲得服務的成本。 日前美國加州政府修改了首部以消費者個人資料權利為規範之州級法律「加州消費者隱私保護法(California Consumer Privacy Act, CCPA)」,使該部法案對於個人資料保護與利用之規範日漸完備,並減少與聯邦政府重複管轄項目,進而達到合理降低州內企業的遵法成本。美國加州州長紐松(Gavin Newsom)簽署的CCPA修正案「AB-713號法案」(Assembly Bill No. 713, an act to amend Sections 1798.130 and 1798.145 of the Civil Code )通過後,CCPA之適用範圍將限縮。若「同時符合」下列二者條件,則可免受CCPA規範: 受「加州醫療資訊保密法」(the California’s Confidentiality of Medical Information Act, CMIA)所規範的的醫療資訊及個人健康資訊之衍生資訊,或受「美國聯邦受試者保護通則」(Federal Common Rule for human research subjects) 所規範的可識別之個人資訊。 根據「健康保險可攜性及責任法」(Health Insurance Portability and Accountability Act, HIPPA)之標準,已去識別化的資訊。 換言之,已經依HIPAA標準去識別化之第一點資訊,即可豁免CCPA針對個人資料保護之相關規定。此將減輕本身不受 HIPAA 規範,但因進行研究或業務目的需接收 HIPPA 去識別化資訊企業之合規負擔。 「AB-713號法案」對於已去識別化資訊之利用或販售行為,增設了契約須載明下列規範架構之條款內容: 如有利用或販售去識別化資訊涉及病患資料者,須在契約中予以聲明。 禁止買受人或被授權利用人以任何方式重新識別去識別化資訊。 除法律另有規定,或第三方受到相同或更嚴格限制之個資保護約束,買受人或被授權利用人不得將去識別化資訊再行揭露予第三方。 「AB-713號法案」亦要求進行CCPA所涵蓋販售或揭露去識別化病患資訊的企業,其隱私政策聲明應納入以下內容: 將出售或揭露去識別化病患之資訊; 採用HIPAA所允許如專家法(Expert determination)或安全港法(Safe harbor)等之何種方式,進行病患資訊之去識別化。 整體來說,「AB-713號法案」讓CCPA的規範稍加鬆綁,明確排除CCPA對特定去識別化資訊之適用,並擴張對研究行為之豁免範圍,在處理上有更多彈性,惟同時也要求企業須充分揭露其個人資料處理原則。