澳洲國家交通委員會針對駕駛法規之修正進行公眾諮詢,聚焦自駕系統實體法律義務

  澳洲國家交通委員會(National Transport Commission, NTC)於2017年10月3日提出「修正駕駛法律以支持自動駕駛車輛(Changing driving laws to support automated vehicles)」討論文件,向相關政府機關與業界徵詢修正駕駛法規之意見。此文件目的在於探討法規改革選項,並釐清目前針對駕駛人與駕駛行為法規對於自駕車之適用,並試圖為自動駕駛系統實體(automated driving system entities, ADSEs)建立法律義務。文件中並指出改革上應注意以下議題:

  1. 目前車輛法規皆以人類駕駛為前提;
  2. 自動駕駛系統並不具有法律人格,無法為其行為負法律責任;
  3. 目前的法律並未提供法律實體之定義或規範(即自動駕駛系統實體ADSEs)來為自動駕駛系統行動負責;
  4. 目前有些法律上人類駕駛應負之義務,無法直接於自動駕駛時由ADSEs負擔;
  5. 車輛之安全義務於自動駕駛時,可能需由非駕駛之他人執行;
  6. 法律中並未定義自動駕駛系統車輛的「控制」與「恰當控制」;
  7. 目前沒有規範何時人類應有義務將駕駛控制權力自自動駕駛系統轉移回來,來確保人類駕駛保持足夠之警覺性;
  8. 目前的遵循與實施規範可能不足以確保自動駕駛系統的安全運作。

  NTC並提出建議應定義自動駕駛系統之法律實體,重新規範人類與自動駕駛系統法律實體間的義務。澳洲國家交通委員會將進一步將諮詢結果與法律改革選項於2018年5月提供給澳洲交通部。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲國家交通委員會針對駕駛法規之修正進行公眾諮詢,聚焦自駕系統實體法律義務, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7919&no=64&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
德國聯邦資料保護暨資訊自由官聲明病人資料保護法恐違反GDPR

  德國聯邦資料保護暨資訊自由官(Der Bundesbeauftragte für den Datenschutz und die Informationsfreiheit,BfDI)Ulrich Kelber教授於2020年8月19日指出,2020年7月3日甫由德國議會通過的病人資料保護法(Gesetz zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur; Patientendaten- Schutzgesetz, PDSG),恐違反歐盟一般資料保護規則(GDPR)。   該法規定自2021年起,健康保險業者必須向被保險人(病人),提供電子病歷(ePA)。而自2022年起,病人有權要求醫生將病人相關資料記錄於電子病歷,包括健檢結果、醫學報告或X光片、預防接種卡、孕婦手冊、兒童體檢手冊、牙科保健手冊等,而被保險人更換健康保險業者時,可要求移轉其電子病歷至新的健保公司。另外,2021年起將可透過手機,下載電子處方並至藥局領取處方藥。2022年1月1日起,將全面強制使用電子處方,病人將可透過智慧手機或平板電腦,決定他人對於電子病歷之近用權限。病人若無手機,可至健保公司查看電子病歷。依照規劃,目前電子病歷的使用仍採自願性。病人可決定保存或刪除哪些資料,以及誰可以近用該文件。自2023年起,被保險人可自願提供電子病歷資料作為研究用途,而因上述研究可處理病人資料之醫師、診所和藥劑師等,有義務確保其資料安全。   BfDI於立法過程中多次強調,在導入電子病歷使用時,病人必須可完全控制自己的資料。而該法規範僅提供病人使用部分設備,例如智慧手機或平板電腦,設定其電子病歷之存取權限,此意謂著將有一段空窗期,病人無法決定其電子病歷中各文件之存取權限。而對於電子病歷中,可否僅開放部分資料供瀏覽或存取,亦受到聯邦資料保護暨資訊自由官質疑。另外,對於無法或不想在手機或平板電腦上使用上述功能的人,本法並未進一步規定,亦即2022年起,上述病人為了能夠檢查或接受醫療,必須強迫病人控制其相關資料,但目前顯然尚缺乏相關配套。此外,以資料保護角度而言,目前電子病歷之認證程序有安全疑慮,尤其是未使用電子健康卡的替代驗證程序尚不夠嚴謹,因此命令相關單位應於2021年5月前完成改善。   電子病歷是對醫療保健改善的重要一步,因此相關健康資料保護需要符合GDPR規範水平。電子病歷雖已逐漸受到認可與重視,惟當前病人資料保護法恐無法完全保護病人資料安全。因此,BfDI將透過監管手段,確保健康保險公司不會因提供電子病歷而違反GDPR。

加拿大運輸部發布2025無人機方案,提出建立無人機交管系統等優先項目

  加拿大運輸部(Transport Canada)於2021年3月22日發布「2025無人機方案」(Transport Canada’s Drone Strategy to 2025),概述其對無人機的願景及方案,並提出其至2025年前所應優先關注之項目,以確保無人機安全地整合進現代化航空系統並進入空域中。   為因應無人機產業發展帶來新挑戰及機會,加拿大運輸部列出五點事項做為對總體政策及優先事項之考量,包括: (一)透過安全規範支持創新:相關方案包含為偏鄉地區操作較低風險之視距外操作制定規範、為中度風險視距外操作核發飛行操作許可、在實際操作環境中測試技術,以及核准相關試行計畫,以提供中度風險之視距外操作更多的政策規劃資訊。 (二)建立無人機交通管理系統:包括建立無人機飛行計畫、空域使用請求系統、通訊、導航及空域監管系統、自2021年於偏鄉地區進行無人機交通管理實驗、探索「數位牌照」(digital license plate)用於遠端識別無人機的選項,以作為無人機交通管理系統基礎。 (三)無人機的安全風險:與利益相關人合作釐清機場保安的角色與職責、通訊傳輸協定及突發事件回應期間的工作協調、評估機場威脅及漏洞以了解風險、探索反無人機技術、對未經授權無人機的侵入進行偵測及追踪,以及導入驅逐未經授權無人機的安全框架。 (四)創新推動經濟發展:促進短、中期研發計畫、對先進無人機研發活動尋求合作機會、尋求能為加拿大氣候環境與操作提供資料的優先研發項目、制定方案使新型無人機技術更容易被國際市場接受、針對無人機之營運框架及產業目標進行評估、擬定產業合作策略並促進現有航空經濟框架現代化。 (五)建立民眾對無人機的信任:為增進民眾對無人機的認識及接受度,制定行動計畫、與地方政府共同規劃營運、鼓勵更多的社群參與,並與執法單位持續合作執行安全無人機操作規則。   加拿大運輸部將對本方案定期進行評估並於2025年前完成總體檢視,並公布2025-2030年的無人機發展方案。

日本訂定氫燃料基本戰略,推廣氫燃料使用並降低碳排放。

  日本於2017年12月26日「第2次再生能源及氫氣等閣員會議」中,作為跨省廳之國家戰略,訂定「氫燃料基本戰略」(下稱「本戰略」),2050年為展望,以活用及普及氫燃料為目標,訂定至2030年為止之政府及民間共同行動計畫。此係在2017年4月召開之「第2次再生能源及氫氣等閣員會議」中,安倍總理大臣提出為了實現世界先驅之「氫經濟」,政府應為一體化策略實施,指示於年度內訂定基本戰略。為此,經濟產業省(下稱「經產省」)邀集產官學專家,召開「氫氣及燃料電池戰略協議會」為討論審議,擬定本戰略。其提示出2050年之未來之願景,從氫氣的生產到利用之過程,跨各省廳之管制改革、技術開發關鍵基礎設施的整備等各種政策,在同一目標下為整合,擬定過程中有經產省、國土交通省、環境省、文部科學省及內閣府為共同決定。   氫燃料基本戰略之訂定,欲解決之兩大課題:   第一,能源供給途徑多樣化及自給率的提高:日本94%的能源需依靠從海外輸入化石燃料,自給率僅有6-7%,自動車98%的燃料為石油,其中87%需從中東輸入。火力發電場所消費的燃料中,液態天然氣(LNG)所佔比例也在上升中,而LNG也幾乎全靠輸入。   第二,CO2排出量的削減。日本政府2030年度之CO2排出量預定比2013年度削減25%為目標。但是,受到東日本大地震後福島第一核能發電廠事故的影響,日本國內之核能電廠幾乎都停止運轉,因此LNG火力發電廠的運轉率也提高。LNG比起煤炭或石油,其燃燒時產生CO2之量較為少,但是現在日本電力的大部分是倚賴LNG火力發電,CO2排出量仍是增加中。   因此本次決定之氫燃料基本戰略,係以確實建構日本能源安全供給體制,並同時刪減CO2排出量為目標,能源如過度倚賴化石燃料,則係違反此二大目標,因此活用不產生CO2的氫燃料。但是日本活用氫燃料之狀況,尚處於極小規模,或者是實驗階段。把氫燃料作為能源之燃料電池車(FCV),其流通數量也非常少,而氫燃料販賣價格也並非便宜。   氫燃料戰略之目標係以大幅提高氫燃料消費量,降低其價格為目的。現在日本氫燃料年間約200噸消費,預定2020年提高至4000噸,2030年提高至30萬噸,同時並整備相關商用流通網。為了提高氫燃料消費量,需實現低成本氫燃料利用,使氫燃料之價格如同汽油及LNG同一程度之成本。現在1Nm3約為100日圓,2030年降低至30日圓,最終以20日圓為目標,約為目前價格之5分之一為目標,在包含環境上價值考量,使其具備與既有能源有同等競爭力。   實現此一目標需具備:1.以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈;2.燃料電池汽車(FCV)、發電、產業利用等大量氫燃料利用及技術之開發。 以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈 透過活用海外未利用資源,以澳洲之「褐碳」以及汶萊之未利用瓦斯等得製造氫,目前正在大力推動國際氫燃料供應鏈之開發計畫。水分含量多之褐碳,價格低廉,製造氫氣過程中產生之CO2,利用目前正在研究進行中之CCS技術(「Carbon dioxide Capture and Storage,CO2回收及貯留技術),將可製造低廉氫氣。為了將此等海外製造之氫氣輸送至日本,使設備大規模化,並開發特殊船舶運輸等,建立國際氫燃料供應鏈。再生能源採用的擴大與活化地方:再生能源利用擴大化下,為了確保能源穩定供應,以及有必要為剩餘電力之貯藏,使用過度發電之再生能源製造氫燃料(power to gas技術)而為貯藏,為可選擇之方法,目前正在福島浪江町進行相關實證。 燃料電池汽車、發電、產業利用等大量氫燃料之利用   (1)電力領域的活用:前述氫氣國際供應鏈建立後,2030年商用化實現,以17日圓/kwh為目標,氫燃料年間供應量約30萬噸左右(發電容量約為1GW)。未來,包含其環境上價值,與既有LNG火力發電具備相等之成本競爭力為目標。其供應量。年間500萬噸~1000萬噸左右(發電容量16~30GW)。2018年1月開始在神戶市港灣人工島(Port Island),以氫作為能源,提供街區電力與熱能,為世界首先之實證進行。   (2)交通上之運用:FCV預計至2020年為止,4萬台左右之普及程度,2025年20萬台左右,2030年80萬台左右為目標。氫氣充填站,2020年為止160站、2025年320站,2020年代後半使氫氣站事業自立化。因此,管制改革、技術開發及官民(公私)一體為氫氣充填站之策略整備,三者共同推進。   燃料電池(FC)巴士2020年引進100台左右、2030年為止1200台左右。(FC)燃料電池堆高機2020年引進500台左右,2030年1萬台左右。其他如:燃料電池卡車、燃料電池小型船舶等。   (3)家庭利用:家庭用氫燃料電池(ENE FARM),係以液態瓦斯作為能源裝置,使用改質器取得氫,再與空氣中氧發生化學變化,產生電力與熱能,同時供應電力與熱水。發電過程不產生CO2,但是改質過程抽出氫時,會排出CO2。降低價格,使其普遍化為目標,固體高分子型燃料電池(PEFC)在2020年約為80萬日圓,固態酸化物燃料電池(SOFC)約為100萬日圓價格。在集合住宅及寒冷地區、歐洲等需求較大都市,開拓其市場。2030年以後,開發不產生CO2之氫燃料,擴大引進純氫燃料電池熱電聯產。   其他例如:   (4)擴大產業利用。   (5)革新技術開發。   (6)促進國民理解與地方合作。   (7)國際標準化作業等。   此一氫燃料戰略之推行下,本年3月5日為了擴大普及FCV,由氫氣充填營運業者、汽車製造業者、金融投資等11家公司,共同進行氫氣充填站整備事業,設立「日本氫氣充填站網路合作公司(英文名稱:Japan H2 Mobility,下稱「JHyM」)」,加速並具體化氫氣充填站之機制,今後以JHyM為中心,推動相關政策與事業經營。預定,本年春天再設立8個充氣站,完成開設100個氫氣充填站之目標。

日本提出未來車聯網社會之三大威脅及促進實現車聯網社會策略

  日本總務省之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年8月4日公布研究成果。車聯網研究會指出未來車聯網將面對①遠距離操作、網絡攻擊之威脅;②資料(Data)真實性之威脅;③隱私權之保護等三大威脅。針對遠距離操作、網絡攻擊之威脅,在汽車端及網路端皆應提出防止威脅之策略;在確保資料真實性方面,需建立機制,以防止資料中途被篡改;未來在車輛雲端資料之應用,應以隱私權保護為前提,始促進車輛資料之利用及活用,以保護相關人之隱私權。   車聯網研究會在促進實現車聯網社會策略中,希望透過①聯網計畫(Connected Network プロジェクト)、②互聯資料計畫(Connected Data プロジェクト)、③互聯平台計畫(Connected Platform プロジェクト)等三個計畫,共同建立推廣實證平台,以確立及實證必要之技術,建立資料利用及活用之模式及環境,架構開放性合作模式,並確保隱私及安全性。進而建設高度可靠性之無線通信網路、透過創新產業和商業模式促進資料之利用、創新環境的發展,達到解決日本之社會問題、實踐便利與舒適之生活、國家競爭力之強化與確保等車聯網社會三大目標,最終落實安全、安心、舒適的車聯網社會。

TOP