澳洲國家交通委員會針對駕駛法規之修正進行公眾諮詢,聚焦自駕系統實體法律義務

  澳洲國家交通委員會(National Transport Commission, NTC)於2017年10月3日提出「修正駕駛法律以支持自動駕駛車輛(Changing driving laws to support automated vehicles)」討論文件,向相關政府機關與業界徵詢修正駕駛法規之意見。此文件目的在於探討法規改革選項,並釐清目前針對駕駛人與駕駛行為法規對於自駕車之適用,並試圖為自動駕駛系統實體(automated driving system entities, ADSEs)建立法律義務。文件中並指出改革上應注意以下議題:

  1. 目前車輛法規皆以人類駕駛為前提;
  2. 自動駕駛系統並不具有法律人格,無法為其行為負法律責任;
  3. 目前的法律並未提供法律實體之定義或規範(即自動駕駛系統實體ADSEs)來為自動駕駛系統行動負責;
  4. 目前有些法律上人類駕駛應負之義務,無法直接於自動駕駛時由ADSEs負擔;
  5. 車輛之安全義務於自動駕駛時,可能需由非駕駛之他人執行;
  6. 法律中並未定義自動駕駛系統車輛的「控制」與「恰當控制」;
  7. 目前沒有規範何時人類應有義務將駕駛控制權力自自動駕駛系統轉移回來,來確保人類駕駛保持足夠之警覺性;
  8. 目前的遵循與實施規範可能不足以確保自動駕駛系統的安全運作。

  NTC並提出建議應定義自動駕駛系統之法律實體,重新規範人類與自動駕駛系統法律實體間的義務。澳洲國家交通委員會將進一步將諮詢結果與法律改革選項於2018年5月提供給澳洲交通部。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲國家交通委員會針對駕駛法規之修正進行公眾諮詢,聚焦自駕系統實體法律義務, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7919&no=64&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

OECD 發布2015年科學、科技與產業計分板,建議各國政府應增加對於創新研發之投資

  於2015年10月19日,經濟合作與發展組織(OECD)發布最新2015年OECD科學、科技與產業計分板(OECD Science, Technology and Industry Scoreboard 2015),此份報告指出,各國政府應增加對於創新研發的投資,以發展工業、醫療、資通訊產業的新領域科技,也將為氣候變化等全球性挑戰提供急需的解決措施。該報告數據顯示,美國、日本和韓國在新一代突破性科技方面具領先地位,即智慧製造材料、健康、資通訊技術這些有潛力改變現有進程的領域,尤其是韓國,最近在這些領域獲得了重大進展。自2000年以來,韓國的公共研發支出增加二倍之多,2014年GDP佔比達1.2%。反觀,許多發達經濟體的公共研發支出卻停滯不前,2014年OECD經濟體公共研發GDP佔比平均水平低於0.7%。   於2010-12年間,在智慧製造材料、健康和新一代資通訊技術領域,在歐洲和美國申請專利家族(patent families)中,美國、日本和韓國共佔到65%以上,接著是德國、法國與中國。2005-07年,韓國在這三個領域的專利家族申請數表現出最為強勁。在資通訊技術領域,韓國正致力於推動智慧聯網技術,歐盟是量子計算,中國則是巨量資料。於2013年OECD國家總研發支出實際增長了2.7%,達1.1萬億美元,但其GDP佔比與2012年相同,為2.4%。這一增長主要來自企業研發投入,而政府研發投入受到了預算合併等措施的影響。創新不止依靠研發上的投入,也依靠互補性資產,如軟體、設計和人力資本,即知識資本(knowledge-based capital, KBC)。知識資本投入已證實可抵抗經濟危機的衝擊,且2013年的數據表明各個經濟行業都增加了對知識資本的投入。但自2010年以來,許多發達國家政府資助或實施的研發減少或停滯不前。OECD警示,研發支出的減少對許多發達經濟體科技研發系統的穩定產生了威脅。鑑於OECD國家70%的研發來自企業部門,也傾向於關注特定應用程序的開發,從而改進先前的OECD計分版本,此份報告強調政府有必要保持對更具開放性的“基礎研究”的投入,始能激發與一些潛在用戶相關的新發現與新發明。

韓國中小企業暨新創事業部發布「韓國新創政策」,力求成為全球前三大「新創企業之國」

韓國中小企業暨新創事業部(Ministry of SMEs and Startups, MSS)於2023年8月30日公布「韓國新創政策」(Startup Korea),是一項提供新創企業中、長期支持的全面性政策。 韓國中小企業暨新創事業部部長李泳(LEE Young)指出,韓國新創生態圈受政府積極推動創新創業政策以及鼓勵創業的大力支持不斷蓬勃發展。而政府創新創業政策在面對近年來勢洶洶的全球數位浪潮中,必須有所變革創新,方足以因應現今數位經濟時代下之產業轉型需求,從而在競爭激烈的全球市場中勝出。 「韓國新創政策」提出三大重點策略: (1)超越邊界(Beyond Boundaries):MSS將打造國際級的創業生態新系統,以加速韓國新創企業與國際接軌。 放寬外國專業人才工作簽證(E-7 Visa)申請標準,向擁有創新技術發展可行性的外國新創提供創業家簽證(Startup Visa)和資金,以建立更具包容性的創業生態系統。 (2)團結一致(Solidarity):MSS將推動政府民間攜手整合資金投入新創,同時還將為新創企業引介更多的財務資源。 設立「韓國新創基金」(Startup Korea Fund),由政府與民間共同投資,目標是到2027年時基金總規模可達2兆韓元,將以具先進科學和工程創新技術的深度技術(Deep Tech)新創,例如AI、半導體等為重點投資對象。此外,亦將透過更多元的投資和貸款模式,增加新創企業取得資金的管道。 (3)產業群聚、平等機會以及開放式創新(Regional Startup, Equal Opportunity + Open Innovation):MSS將推動新創產業群聚生態鏈的發展,以及加速企業集團與新創企業的鏈結。 計劃建構新創產業群聚生態鏈,以帶動長期被忽視的區域產業發展可能性。例如將在定錨企業(Anchor Company)、大學以及研究機構緊密生活商圈中建設Space-K創業中心(Provincial Space-K)。又,推動新創與企業間之合作項目擴大到AI以及生物技術等十大新興產業。 藉由「韓國新創政策」,韓國力求實現新增5家百大新創獨角獸,以及成為全球前三大「新創企業之國」之目標。 面對全球數位轉型浪潮,台灣政府應從國際動向觀察政策趨勢,韓國中小企業暨新創事業部發布之「韓國新創政策」,非常值得我國參考借鏡。

TOP