經產省為了在智慧家庭領域創造新事業,整備相關資料活用環境,蒐集共有及分析從多種多樣機器及服務所實際產出之資料,於2017年8月開始實施實證實驗。在實施前,為了使參加實證之民間公司間,得為資訊合作而完備相關規則及保安對策,於5月24日召開「智慧家庭資料活用環境整備推進事業」檢討會。因物聯網(IoT)的擴大得以蒐集龐大資料,以及現在人工智慧(AI)解析能力提高下,期待在各種領域提高生產效率及創造新的事業模式。特別是在智慧家庭領域,其在「新產業構造願景的中間整理」(2016年4月27日、產業構造審議會新產業構造部會)中,為有力重要領域。因此,以IoT技術等使家庭內機器網路化,活用此一資料,除了使既存事業模式發生變革或創造新事業模式外,也期待可以透過把握製品之使用資訊,而提高產品回收(recall)率,並促進資源回收以及家庭部門節能化等相關社會課題解決上。為此,本事業係以對於家庭內機器網路化及透過此而創造新事業為目標,整備事業環境與社會課題及各主題新事業服務創造相連結,因應每個人的生活模式而使得生活空間客製化成為可能,實現智慧家庭之社會目標。
本文為「經濟部產業技術司科技專案成果」
美國聯邦貿易委員會(Federal Trade Commission, 以下稱FTC)在2017年2月6號於其網站中公布, VIZIO, Inc.(以下稱VIZIO),世界最大的智慧電視製造商之一,在未取得購買該公司產品之千萬餘名消費者同意下,即於所生產之智慧型電視中,安裝蒐集消費者收視行為數據之軟體,然此舉業涉及違反美國聯邦貿易委員會法第45條(15 U.S.C. § 45 (n))以及紐澤西州消費者欺詐法(New Jersey Consumer Fraud Act)。為此VIZIO將支付和解金與美國聯邦貿易委員會及紐澤西州檢察總長辦公室。 本案起訴狀內容指出,VIZIO及其相關企業於2014年2月起便開始於其製造之智慧電視中獲取消費者在收視有線電視、寬頻、機上盒、DVD播放機、無線廣播以及串流裝置等相關影像資料時之資訊。這些資訊包含了性別、年齡、收入、婚姻狀況、教育程度、住屋資訊等交付與VIZIO、第三方及其相關企業做為行銷、發送特定廣告使用。 起訴狀中並稱該公司所謂之智能互動機制,雖可做為協助節目製作和建議,卻也同時於未對消費者詳細說明之下,逕行蒐集相關收視資訊,而此類追蹤消費者資訊屬不公平且欺騙的行為,已違反了FTC與紐澤西州對於消費者保護之法律。 為達成本案之和解,該公司願支付兩百二十萬美元作為和解金,包含向FTC繳納的一百五十萬美元及一百萬美元罰款與紐澤西州消費者事務所。聯邦法院命令並要求VIZIO必須清楚揭露其蒐集資料及分享給他方單位之行為,並取得消費者明示同意;另一方面,該命令亦禁止VIZIO對他們所蒐集消費者之隱私、安全及機密性資訊做誤導性的不實陳述以及刪除於2016年3月1日前所有以不當方式取得之消費者個人資料。該公司尚須接受兩年一次的隱私權安全保障計畫(名詞),包括全面性隱私風險評估、識別消費者個資之潛在不當使用情形,並制訂相關措施來修復這些風險。另新增一項銷售管理計畫,以確保該公司產品經銷商及售後服務均能就消費者個人資料得到保障。 此次事件而言,和解金雖非屬可觀之金額,然重點在於作為世界最大的智慧電視製造商之一的VIZIO,經揭露此一訊息後對其商譽之影響,或許才是最大的打擊。為了在大數據時代中能有效的管控法律風險,任何蒐集消費者行為等個人資料時,均應符合相關法令的規範,如建立個人資料保護機制並事前告知取得消費者蒐集之同意為宜。
美國通過最新的電子醫療紀錄之隱私與安全標準美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。 這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。 在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。
蘋果電腦(Apple)被判專利侵權須賠償美金1900萬元蘋果電腦(Apple)於2009年4月23日被美國德州東區地方法院判定侵害OPTi 公司之專利並且必須賠償美金$1900萬元。此項專利涉及記憶體之”predictive snooping” 技術。陪審團並認為蘋果電腦之行為構成故意侵權。蘋果電腦雖主張OPTi 公司之專利為無效,但此抗辯不為法院所採納。 OPTi 公司自2003年開始即放棄其原有的製造與販賣產品的生意,改經藉由提起侵權訴訟來獲取利益。除了控告蘋果電腦外,OPTi 公司也針對其”predictive snooping” 專利技術於同一法院對AMD 公司提出類似的專利侵權訴訟。由蘋果電腦此次被判敗訴來看,OPTi 公司似乎已準備好擴大藉由它所擁有的predictive snooping” 技術專利以提起訴訟的方式來獲取授權收益。如同以往,蘋果電腦未對此次被判侵權賠償做出任何評論。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。