美國專利商標局(USPTO)與歐洲專利局(EPO)簽署協議,合作開發「以歐洲專利分類系統為基礎,並納入兩局分類實務特點」的共同分類系統:「合作專利分類」(Cooperative Patent Classification, CPC)系統,該系統為全球性的專利文件分類系統。USPTO與EPO為促進專利調合化,積極努力並共同合作建立CPC系統,該系統結合了兩局最好的分類作法,為專利技術文件建立一個共同且為國際間相容的分類系統,供專利審查使用。CPC於2013年1月1日宣布正式啟用,EPO開始使用CPC,不再使用歐洲專利分類(ECLA);2015年1月1日,USPTO正式宣告成功由美國專利分類(USPC)轉換至CPC。目前已有超過45個專利局與超過 25,000名審查人員使用CPC作為檢索工具,使CPC成為國際性的分類標準。
本文為「經濟部產業技術司科技專案成果」
美國政府在2015年9月14日發布,將投入超過1.6億美元(約台幣50億元)於新的「智慧城市計畫」(Smart Cities Initiative)。透過中央政府的研究,以及全美國超過二十個城市的合作,來共同著手城市主要面臨的問題,包含:減緩交通阻塞、對抗犯罪問題、促進經濟成長、對於氣候變遷影響的管理、改善城市服務的遞送問題等。此戰略主要有四個策略方案:(一)創造「智慧聯網」應用的試驗平台,並發展新的多部門合作模式;(二)致力於城市科技相關的活動,並打造城市之間的合作;(三)善用現有的中央政府資源;(四)追求國際間合作。 而在十月份,美國白宮公佈由國家經濟委員會(National Economic Council)與國家科學與技術政策辦公室(Office of Science and Technology Policy)共同完成的「美國創新戰略」(A Strategy for American Innovation)中,明確地指出美國國家的突破重點領域為:解決國家及全球性的挑戰(Tackling Grand Challenges)、精密醫療、健康照護、先進的運輸工具、智慧城市、乾淨能源與能源效率、教育科技等面向。此戰略報告係延續美國白宮於2011年,由相同組織單位所完成的「美國創新戰略-確保經濟發展與繁榮」(A Strategy for American Innovation – Securing Our Economic Growth and Prosperity),其中列舉出國家的目標政策為:能源改革、生物科技、太空探索、醫療健康與教育科技。相較下,十月份甫公佈的美國「創新戰略」則更明確的將「智慧城市」之發展設為重點政策。 美國政府將投入協助芝加哥(Chicago)「科技計畫」(Tech Plan)中的子計畫-「城市感測器專案」(Array of Things, AoT),發展當地下一代智慧聯網的基礎設施,包括運用內建Wi-Fi的感測器裝置路燈,使其能夠有照明的基本功能外,還能蒐集諸如人潮流量、天氣、濕度、空氣品質、亮度、聲音大小等數據。 在此戰略推動之下,美國主要之智慧城市發展的實例,如匹茲堡(Pittsburgh)的前導計畫(pilot project),係藉由交通網絡之間的交通號誌整合,得以優化地區性的交通吞吐量,讓平均降低將近百分之二十五的交通時間。另外,在肯塔基州(Kentucky)的最大城市-路易斯維爾(Louisville),利用具有感測功能之哮喘吸入器所蒐集的資料,統整出哮喘發生的「熱點」,以及空氣品質等級等其他環境因素,作為該州政府政策制定參考依據。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
網路中立管制在美國與歐盟的新發展 美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。 本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。 第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。