何謂「合作專利分類」?

  美國專利商標局(USPTO)與歐洲專利局(EPO)簽署協議,合作開發「以歐洲專利分類系統為基礎,並納入兩局分類實務特點」的共同分類系統:「合作專利分類」(Cooperative Patent Classification, CPC)系統,該系統為全球性的專利文件分類系統。USPTO與EPO為促進專利調合化,積極努力並共同合作建立CPC系統,該系統結合了兩局最好的分類作法,為專利技術文件建立一個共同且為國際間相容的分類系統,供專利審查使用。CPC於2013年1月1日宣布正式啟用,EPO開始使用CPC,不再使用歐洲專利分類(ECLA);2015年1月1日,USPTO正式宣告成功由美國專利分類(USPC)轉換至CPC。目前已有超過45個專利局與超過 25,000名審查人員使用CPC作為檢索工具,使CPC成為國際性的分類標準。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「合作專利分類」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7940&no=64&tp=5 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
德國通過《小型電動車條例》,實現清潔現代化運輸並確保道路安全

  隨著現代德國城市興起騎乘小型電動車(例如:電動滑板車和電動踏板車)風潮,德國聯邦交通及數位基礎設施部(Bundesministerium für Verkehr und digitale Infrastruktur, BMVi)制定小型電動車條例(Elektrokleinstfahrzeuge-Verordnung),以實現清潔現代化運輸並確保道路安全,該條例於2019年6月15日正式生效,並取代原有的行動輔助工具條例(Mobilitätshilfenverordnung),此外,德國聯邦車輛運輸管理局(Kraftfahrt-Bundesamt, KBA)並陸續公布經審驗合格之小型電動車清單。   由於歐洲議會及理事會通過的二輪或三輪和四輪車核可及市場監督規則(EU Nr. 168/2013)將自動平衡車輛和無座椅車輛特別排除,因此BMVi制定行動輔助工具條例,以規範例如Segways的新型運輸工,然而隨著市場推出更多新型小型電動車,原行動輔助工具條例已無法有效規範,因此制定小型電動車條例,除將原本核可小型電動車納入適用外,而本條例所稱小型電動車定義為第一,具備轉向或支撐桿;第二,最高時速設計6~20公里/小時;第三,功率限制為500瓦(自動平衡運輸工具為1400瓦);第四,最低安全要求(例如制動裝置和照明系統,駕駛動態和電動安全設備)。另條例規範重點如下:(1)小型電動車須年滿14歲方能使用,但無須考取任何駕駛執照;(2)小型電動車應行駛於自行車道上,如該段道路無設計自行車道可行駛於側車道,並禁止行駛於人行道或步行區,且不得於踏板上另搭載他人或物品及攀附於其他車輛;(3)須遵守其他一般道路交通法規,特別是保持謹慎駕駛以及酒駕規定須遵守相關規範;(4)保險部分,因小型電動車輛屬於機械動力車輛,故必須投保,並將投保證明貼紙黏貼於車輛上。   另外,BMVi主張並支持小型電動車可攜帶上公共交通工具,然原則上,攜帶小型電動車搭乘公共交通工具,受貨物運輸規範約束,應視電車及無軌電車等固定路線動力車輛之一般條件及服務條例(BefBedV)第11條,或有關運輸公司之特殊運輸條件規範個案判斷。

日本空中工業革命新進展:無人機變身空中郵差

  日本政府曾於2017年6月9日閣議公布之《未來投資戰略2017》(未来投資戦略2017),以及5月19日「小型無人飛行載具相關部會連絡會議」(小型無人機に関する関係府省庁連絡会議)公布之《空中工業革命時程表》(空の産業革命に向けたロートマッフ)中,提出「2018年運用於山間地區運送貨物、2020年可正式在都市內安全運送貨物」之目標。故國土交通省與經濟產業省於同年10月4日共同設立「無人飛行載具於目視範圍外及第三者上空等飛行檢討會」(無人航空機の目視外及び第三者上空等での飛行に関する検討会),並於2018年9月18日公布《無人飛行載具運送貨物自主指引》(無人航空機による荷物配送を行う際の自主ガイドライン,以下稱「本指引」)。本指引目的係制定安全運輸貨物所應遵守事項、提高社會對無人機運送貨物之信賴,以求提升運輸效率、節省人力成本。適用對象為非屬航空法第132條規定須申請許可之空域,但於目視範圍外飛行並運送貨物之無人機。   本指引公布後,國土交通省與環境省於相關提案中選出5個人口非密集區,以進行之無人機運輸貨物(ドローン物流)實驗。首先,在2018年10月22日長野縣白馬村,無人機自海拔1500公尺處運送最重達8公斤的食品至海拔1850公尺處的山莊,單程耗時6分鐘,共往返3次,皆無發生明顯失誤。日本郵政之提案則在同年11月7日,從福島縣小高郵局成功運抵位於南方約9公里處的浪江郵局,耗時16分鐘。本次實驗係首次成功於目視範圍外運輸物品,實驗途中均未設置監看人員,僅以電腦掌握兩地衛星定位資訊,並監看無人機上搭載相機傳回的畫面。日本郵政計畫未來1年內,每個月將有6天以無人機運送2公斤內的傳單等物品。國土交通省與環境省計畫於年底前完成另外3個地區的實驗,並統整結果驗證是否能解決山間等人口非密集區,因貨物乘載率低而運輸效率低落,以及降低排碳量等課題。

中國大陸於最高人民法院內新設立知識產權法庭

  近期美國與中國大陸雙方針對貿易問題展開激烈攻防,起因為美國冀望透過「貿易戰」扭轉中美龐大的貿易逆差,而其中一個主要爭議點即為中國大陸日趨嚴重之侵權仿冒等問題。   中國大陸於第十三屆全國人大常委會表決通過最高人民法院提請審議的《關於專利等案件訴訟程式若干問題的決定》,批准最高人民法院設立知識產權法庭,主要審理專利等專業技術性較強的知識產權民事及行政上訴案件,以達成知識產權案件審理專門、集中及人員專業化之目的,提供更為專業之司法服務及保障。由最高人民法院知識產權法庭統一審理發明和實用新型專利為主之上訴案件,有利於對中外企業知識產權之保護,實現知識產權效力判斷與侵權判斷兩大訴訟程式和裁判標準的對接,以利解決機制上之裁判尺度不一問題,提高知識產權審判品質效率,提升司法公信力。   值得注意的是,最高人民法院知識產權法庭審理之案件,僅以不服知識產權一審判決、裁定中發明和實用新型專利等案件,其他上訴案件,仍由智慧財產權法院所在地的高級人民法院審理。中國大陸最高人民法院院長周強表示,知識產權法庭之設立,宣示平等保護中外市場主體知識產權,該知識產權法庭並不會處理與不正當競爭、商標或營業秘密有關之案件。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP