本文為「經濟部產業技術司科技專案成果」
美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。 美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。 FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。 以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。
資通安全法律案例宣導彙編 第1輯 英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。