德國車輛及其系統新技術研發計畫

  德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。

  在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。

  在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。

  本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。

本文為「經濟部產業技術司科技專案成果」

※ 德國車輛及其系統新技術研發計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=7949&no=64&tp=5 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制

日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

時尚奢華品牌-Gucci與服飾品牌-Guess間之商標戰爭

  Gucci America, Inc. (Gucci) 於2009年對Guess?, Inc. (Guess)提出商標侵權訴訟,美國聯邦地方法院(United States District Court, SDNY)於2012年5月在無陪審團審判的結果下,判定Guess禁止使用「紅-綠條紋」、「G字菱形圖」、及「環環相扣的G圖」等三項商標,並須賠償Gucci 466萬美元之損害賠償。   緣,Gucci聲明Guess係惡意侵害及仿冒Gucci的商標設計,企圖造成消費者的混淆誤認,並淡化Gucci的商標權,故針對「紅-綠條紋」、「G字菱形」、「環環相扣的G圖形」、及「手寫Guess logo」等商標設計聲明其禁止銷售、販賣及使用,並主張因Guess的惡意仿冒,請求1.2億美元的損害賠償。   Guess於訴訟過程中提出抗辯,(1) Guess無理由仿冒Gucci的商標、 (2) Gucci至少超過七年以上放任Guess使用其所聲稱的Gucci商標設計且未提出訴訟;此外,(3) 消費者並不會將Guess的產品與Gucci的產品誤認,因Guess與Gucci所訴求的客戶市場並不相同。   Scheindlin法官於裁定書中敘明,Gucci無法直接證明因Guess之商標侵害造成其品牌上的極大損害,故最終損害賠償金額僅判定466萬美元 。   本案之法院結果將影響其他時尚品牌之商標或產品外觀近似的侵權案件。

日本經產省公布產業版資料契約指引和資安手冊

  日本經濟產業省於2017年起提倡「Connected Industries」,其中一項重點任務為「平台、基礎設施安全」。為達成上述任務,經產省召開「平台資料活用促進會議」(プラントデータ活用促進会議),於2018年4月26日制定公布「資料契約指引產業保安版」(データの利用に関する契約ガイドライン産業保安版)及「物聯網安全對應手冊產業保安版」(IoTセキュリティ対応マニュアル産業保安版),以因應資料經濟時代資訊外洩及網路攻擊等風險。   日本經產省為促進業界資料流通與利用,已陸續於2015年、2017年和2018年制定「推動現有資料交易為目的之契約指引」(既存のデータに関する取引の推進を目的とした契約ガイドライン)、「資料利用權限契約指引」(データ利用権限に関するガイドラインVer.1.0)。本次「資料契約指引產業保安版」則進一步整理資料權利歸屬判斷方式,提供模範條款及說明各條款內容,並羅列作為資料提供者可能具備之優點。此外,隨著物聯網等資訊科技發展,資安風險逐漸受到重視,為提升物聯網產品安全防護,經產省亦以平台管理者為對象,制定「物聯網安全對應手冊產業保安版」,提供適當安全對策及案例。

TOP