2017年10月,美國知名保險公司Farmers Insurance Group(下稱Farmers)在加州法院提訴,控告前員工Venkatesh Kamath(下稱Kamath)、前資訊長Shohreh Abedi(下稱Abedi)和競爭對手American Automobile Association(下稱AAA協會)旗下的Automobile Club of Michigan(下稱Auto Club)竊取營業秘密。
Farmers聲稱,於2015年起使用Guidewire Software(下稱Guidewire),以更新其理賠處理和保險服務系統。Kamath因Guidewire業務,接觸到Farmers高度敏感與機密資訊。Abedi前為Kamath上司,曾監督Guidewire計畫初期階段。之後Abedi至Auto Club任職,協助Auto Club轉換使用Guidewire,並挖角包括Kamath在內許多Farmers員工。Kamath離職前,從Farmers電腦中拷貝超過6400份檔案,其中包括與Guidewire計畫及Famers核心業務相關的營業秘密資訊。
Farmers控訴Kamath、Abedi及Auto Club違反加州營業秘密法(California Trade Secret Act)、從事不公平競爭、違反忠實義務及其他事由,除訴請賠償外,也請求法院禁止被告使用其營業秘密。
本案非Farmers與AAA協會首次因營業秘密事宜而對訟。2010年間,Farmers曾控告AAA協會旗下Auto Club Group竊取其投保客戶機密資訊,惟該案當時經法院以Farmers未能證明有何損失或損害為由,駁回其訴。Farmers公司於2017年10月對Auto Club提起的本件訴訟,法院實務的發展為何,值得後續觀察。
物聯網是指明確可辨識的實體物件與虛擬的類網路代理架構的聯結。它是由馬克.維瑟於1991年所提出,指的是(個人)電腦作為機具設備的形式未來將逐漸消失,而替換為"智慧元件"的形式。當前人們關注的對象已經不再是物體本身,而是人們的各種活動中的物物相連。其在不知不覺中已經提供人們各式各樣的輔助,例如小型化的嵌入式電腦毋需操作,就可以提供各式各樣的輔助。這種微型的電腦,即所謂的穿戴式裝置,可以最大程度地結合不同感應器直接在服裝上出現。 數位化在多個層面正在改變我們的生活和工作方式。現代資訊技術幾乎使任何對象無論是家庭日常物品或工廠內的機器,都能用最小的空間達到強大的計算能力(所謂的“嵌入式系統”)。烤麵包機,洗衣機和機床都可由軟體控制,並可以透過網際網路相互、或與外部世界聯結。 物聯網在居家領域具體將以智慧住宅(Smart Home)形式呈現。運用智慧聯網技術將能獲得更多的舒適性和安全性、節約能源或提供適合各年領階層的生活與和起居。現有的解決方案可以透過智慧型手機遠端控制進行空調、電爐和燈具的使用。未來,洗衣機甚至可以自動尋找最優惠的電價決定洗衣服的最佳時間。 智慧家居若要成功,需得到消費者的接受。故物聯網解決方案必須具有可信賴性(資料保護、資訊安全)、能夠持久並可靠地運作,並能夠在未來繼續穩定地投入智慧家庭的行列。對於製造商和供應商而言,應該以在新的立場和視角來開拓一個新的市場。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
日本制定民間個人健康紀錄業者蒐集、處理、利用健康資料之基本指引草案日本厚生勞動省、經濟產業省和總務省共同於2021年2月19日公布「有關民間個人健康紀錄(Personal Health Record, PHR)業者蒐集、處理、利用健康資料之基本指引」(民間PHR事業者による健診等情報の取扱いに関する基本的指針)草案,檢討民間PHR業者提供PHR服務之應遵守事項,希望建立正確掌握和利用個人、家族健康診斷或病例等健康資料之電子紀錄制度。 本指引所稱之「健康資料」,係指可用於個人自身健康管理之敏感性個人資料,如預防接種、健康診斷、用藥資訊等;而適用本指引之業者為蒐集、處理、利用上開健康資料並提供PHR服務之業者。根據指引規定,PHR業者應針對資訊安全對策、個人資料處理、健康資料之保存管理和相互運用性及其他等4大面向採取適當措施。首先,在資訊安全對策部份,業者需取得風險管理系統之第三方認證(如資訊安全管理系統制度(ISMS));其次,針對個人資料,業者應制定隱私政策和服務利用規約,並遵守個資法規定;然後,為確保健康資料之保存管理和相互運用性,系統應具備雙向資料傳輸之功能;最後,本指引提供檢核表供業者自行檢查,業者亦應在網站上公佈自行檢查結果。