不爽貓著作權與商標侵權及違約訴訟贏得71萬美元賠償

  不爽貓(Grumpy Cat)於2012年於社群網站曝光後爆紅後,不爽貓主人辭去工作成立「不爽貓公司(Grumpy Cat Limited)」,專心經營不爽貓事業並推出馬克杯、服飾等週邊產品,以及參與各類跨界合作等。

  2013年「手榴彈飲料公司(Grenade Beverage)」以15萬美元合約取得不爽貓圖像之授權,得以販售以「Grumpy Cat Grumppuccino」為名且印有不爽貓圖像之冰咖啡品項。然而在2015年「不爽貓公司」發現該圖像進而印製在烘焙咖啡與T恤上,已超出原本約定之使用範圍,而對「手榴彈飲料公司」提出著作權及商標之侵權及違約訴訟。

  「手榴彈飲料公司」負責人桑福德父子(Nick and Paul Sandford)反訴主張「不爽貓公司」未如當初規畫盡公司營運之協助,造成「手榴彈飲料公司」潛在之營收損失而求償1,200萬美元,包括:未讓不爽貓與喜劇演員威爾法洛(Will Ferrell)及傑克布萊克(Jack Black)參與電影演出、「不爽貓公司」僅在社群網站張貼17則冰咖啡之行銷貼文、「不爽貓公司」不重視冰咖啡事業因而在脫口秀節目中脫稿演出等。

  然而,加州南區聯邦地方法院陪審團並未因以上指控而猶疑,認定「手榴彈飲料公司」負責人侵害「不爽貓公司」之著作權與商標,應支付71萬美元作為賠償,至於違反授權約定部分則以1元作為象徵性賠償。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ 不爽貓著作權與商標侵權及違約訴訟贏得71萬美元賠償, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7977&no=64&tp=1 (最後瀏覽日:2025/05/19)
引註此篇文章
你可能還會想看
蘋果,谷歌結束智慧型手機專利訴訟

  蘋果(Apple)與谷歌(Google)旗下的摩托羅拉移動公司(Motorola Mobility)已明確決定就所有有關智慧型手機技術的專利訴訟達成和解。   兩家公司於5月16日周五共同聲明,此次和解並未包含專利交互授權的協議。聲明中指出「蘋果與谷歌亦同意在某些專利改良的領域可進行合作」   蘋果和使用谷歌的Android軟體技術製造手機的公司,已經在全球提出許多類似的訴訟,以保護自己的技術。蘋果認為Android手機所使用谷歌軟體技術,複製於iPhone手機。   依據兩家公司提出的申請,已通知華盛頓聯邦上訴法院駁回訴訟案件,但這協議似乎看起來不適用於蘋果對三星電子公司所提出的訴訟,因未接獲駁回案件的通知。   蘋果和摩托羅拉移動的爭議開始於2010年,摩托羅拉指控蘋果侵犯多項專利,其中包括一個主要如何使手機於3G網路上運行,而蘋果表示,摩托羅拉侵犯其專利的智慧手機的某些功能。   這些案件被合併由芝加哥聯邦法院,然而,審理法官Richard Posner在2012年審判前夕即駁回案件,認為無任何一方可提供足夠的證據各自的主張。上個月,上訴法院讓iPhone製造商另一次機會,贏得一個對抗競爭對手的銷售禁令。   谷歌於2012年以125億美元收購摩托羅拉移動,今年將摩托羅拉移動出售給聯想,仍保留大多數的專利。

美國能源系統需求面管理法制議題之探討

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

TOP