為了全力打造英國成為「FinTech 全球領導者地位」,及引領FinTech 國際監管規則的大國,英國金融業務監理局(Financial Conduct Authority, FCA)於2014年10月啟動了金融科技創新計畫(Project Innovate),目的就是能夠追蹤進入金融市場的新興商業模式,其中最重要的建立監理沙盒制度(Regulatory Sandbox),旨在提供企業可以在安全空間內對創新產品、服務、商業模式等進行測試,而不會立即招致參與相關活動的所有監管後果。
金融科技創新計畫增設創新中心(Innovation Hub),為創新企業提供與監管對接等各種支持。
金融科技創新計畫通過促進破壞式創新鼓勵挑戰現有的商業模式,而創新中心主要透過政策與金融科技業者交流,了解是否監管政策能夠更好的支持創新。
本文為「經濟部產業技術司科技專案成果」
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟法院裁決:網站「預先選取同意」不構成ePrivacy Directive及GDPR合法有效的同意歐洲聯盟法院(CJEU)2019年10月1日對Planet49案(Case C-673/17)作出裁決。Planet49 GmbH為線上遊戲公司,用戶必須註冊並填寫姓名、地址等資料,點擊「參加」鍵後,會出現兩個選項框,一為「同意接收贊助商及合作夥伴的廣告訊息」,用戶必須勾選此一選項始可參加;另一選項框是「同意將用戶的Cookies用於廣告目的與分析」,此一選項已被預先勾選,而用戶可以取消勾選;在選項旁附有說明(如Cookie的用途等),並告知用戶可以隨時刪除所設置的Cookie。 歐盟法院針對《電子通訊隱私指令》(ePrivacy Directive, ePD)以及《一般資料保護規則》(General Data Protection Regulation, GDPR)進行闡明,重點如下: 一、ePD所要求對於Cookie儲存與使用的「同意」必須符合GDPR的「同意」原則,必須是當事人自願、具體、知情且明確的同意,本案「預先勾選同意」不構成有效同意。 二、「同意」必須特定對象,而不能藉由其他標的加以包裝、暗示,用戶點擊「參加遊戲」不能代表「Cookie的同意」。 三、ePD是對於用戶資料儲存與取得的保護,不論是否涉及「個人資料」均有ePD的適用,而必須取得用戶同意。 四、對於Cookie的使用必須清楚揭露,包括Cookie用途、運作期間、第三方是否有機會取得此一資訊等,以確保用戶確實了解其所為「同意」的內容與範圍。
英國上訴法院法官對軟體專利之必要性表示懷疑英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。 軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。
法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。