什麼是「外太空條約」?

  外太空條約(Outer Space Treaty),為各國探索和利用包括月球和其他天體的外太空活動所應遵守原則之條約。聯合國大會於1966年12月17日通過該條約,在1967年 10月10日生效,目前絕大多數會員國已簽署並批准。外太空條約為國際提供了外太空的基本法律框架,包括以下原則:

  1. 探索和利用外太空間應為所有國家的福利進行,並以全人類為一個整體;
  2. 外太空應可供所有國家自由探索和使用;
  3. 外太空不受國家主權主張,不得透過使用、占領或其他方式據為己有;
  4. 各國不得以任何方式將核武器或其他大規模毀滅性武器放入天體軌道或外太空;
  5. 月球和其他天體只能用於和平目的;
  6. 太空人員應被視為人類特使並予救援;
  7. 各國應對包括政府或非政府進行的太空活動負責;
  8. 各國應對其太空物體造成的損害負責;
  9. 各國應避免外太空和天體遭受有害污染。

本文為「經濟部產業技術司科技專案成果」

※ 什麼是「外太空條約」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7981&no=64&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
新冠疫情下日本的數位經濟實踐之路

新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日   2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題   數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。   針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。   執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例   就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。   提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析   有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。   經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。

日本Spam對策研究會即將公布最終報告

英國頒布電子通訊之網路與資訊系統規則

  2018年英國頒布電子通訊之網路與資訊系統規則(The Network and Information Systems Regulations 2018),該規則實施歐盟2016年網路與資訊系統安全指令(Network and Information Security Directive, NIS Directive)。該規則分成幾個部分,第一部分是介紹性條文,例如介紹網路及資訊系統之定義:「(a)2003年通訊法(Communications Act 2003)第32條第1項所指的電子通訊網路;(b)一組或多組互聯或相關設備,其中之設備或程序根據程式自動化處理數位資料;(c)為操作、使用、保護和維護目的,由(a)或(b)款所涵蓋的儲存、處理、檢索或傳輸的數位資料。」   第二部分是英國政府相關組織架構規定,包括網路及資訊系統的國家政策(The NIS national strategy)、國家權責機關的指定(Designation of national competent authorities)、單一聯絡點的指定(Designation of the single point of contact)、電腦安全事件應變小組的指定(Designation of computer security incident response team)、執行機關的資訊分享(Information sharing–enforcement authorities)、北愛爾蘭的資訊分享(Information sharing–Northern Ireland)。   第三部分則是基本服務營運商(類似於我國的關鍵基礎設施營運商)與其職責,包括基本服務營運商的確定、營運權廢止、基本服務營運商的安全維護職責、事故通報的責任等。根據第8條第1項之規定,如果營運商提供本規則附表2所載明的基本服務(包括電力、石油、天然氣、航空運輸、船務運輸、鐵路運輸、公路運輸、醫療健康、數位基礎設施等),並且符合基本服務一定門檻要求者,則該廠商即被視為基本服務營運商(operator of an essential service, OES)。舉例而言,規章之附表2第1項載明,營運商提供電力供應之基本服務者,其一定門檻要求包括:若營運商位於英國,符合「為英國國內超過25萬名消費者提供電力服務」或「輸電系統的發電量大於或等於2 gigawatts」之條件者,該營運商即為基本服務營運商(OES);若營運商位於北愛爾蘭,則應「依據北愛爾蘭1992年的電力法規命令取得供電執照」,且「為北愛爾蘭境內超過8千名消費者提供電力服務」,或符合「發電量大於或等於350 megawatts」等條件,則該營運商即為基本服務營運商(OES)。   再者,若營運商符合第8條第3項所列之條件,則可由主管機關指定為基本服務營運商(OES)。此外,主管機關可根據第9條撤銷基本服務營運商(OES)的認定,基本服務營運商(OES)必須履行第10條規定的安全維護責任,並對於第11條規定的事件負有事故通報的責任。   第四部分則是數位服務,包括相關數位服務提供者、成員國跨境合作與行動、向資訊專門委員進行登記(Registration with the Information Commissioner)、資訊通知(Information notices)、檢查權限、違反義務之強制執行、裁罰、對行政機關裁罰決定之獨立審查、罰鍰之執行、費用、裁罰程序、執法行為的一般考量因素、審查與報告。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP