外太空條約(Outer Space Treaty),為各國探索和利用包括月球和其他天體的外太空活動所應遵守原則之條約。聯合國大會於1966年12月17日通過該條約,在1967年 10月10日生效,目前絕大多數會員國已簽署並批准。外太空條約為國際提供了外太空的基本法律框架,包括以下原則:
本文為「經濟部產業技術司科技專案成果」
紐西蘭內政部於2024年7月25日發布新版洗錢防制與打擊資助恐怖主義(Anti-Money Laundering and Countering Financing of Terrorism, 以下均簡稱AML/ CFT)指引(下稱指引),指導虛擬資產服務提供者(virtual asset service providers, 下稱VASPs)遵循虛擬資產交易行為準則與注意事項。該國有關AML/ CFT之規定係以多項規則與行為指引構成,且應技術、產業與國際標準之變革持續調整既有框架。本次指引更新係為配合AML/ CFT法(AML/ CFT Act 2009)及其規則之修正與生效,重新規範VASPs對於虛擬資產轉帳再定義後義務。以下針對法規變革脈絡簡要說明: AML/ CFT規則(AML/ CFT (Definitions) Regulations 2011)將虛擬資產定義為具有價值的數位貨幣,可用於交易、達成支付或投資目的;雖其不等同於債券、股票與衍生性金融產品或數位法定貨幣,VASPs仍為AML/ CFT法定義之報告實體,負有對客戶進行盡職調查、報告特定業務活動與交易的義務。 自2024年6月起,AML/ CFT規則全面納管虛擬資產轉帳,範圍由法定貨幣與虛擬資產間的流動,擴及虛擬資產間的交易,包含以VASPs作為中介機構之交易情形。此外,基於虛擬資產跨境的特性,所有轉帳皆被推定為國際轉帳,除非VASPs確定該筆交易發生紐西蘭境內。AML/ CFT規則對虛擬資產平臺交易之監管密度係以1,000紐幣為閾值,VASPs須對超過此金額的國際轉帳,向金融情報中心(Financial Intelligence Unit, FIU)提送交易報告;而對於臨時性交易則應盡職調查客戶。 為降低虛擬資產被用於非法活動之風險,防制洗錢金融行動工作組織(FATF)倡議於國際施行一致之監管標準,避免因各國法規監管差異造成防堵漏洞。紐西蘭政府藉改造現行金融法規將相關產業逐步納入監管,並提供指引說明及闡釋法規內容,調適金融科技發展與現有制度規範落差。此次AML/ CFT規則與VASPs指引之修正,將有助於紐西蘭更符合國際組織建議之洗錢防制與反資助恐怖活動監管標準。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
台灣每人二氧化碳排放量逐年增加 全球第二十二名台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。 主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。 行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。 主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。
日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。