澳洲個人資料洩漏計畫將於二月施行

  澳洲於2018年2月22日施行個人資料洩漏計畫(Notifiable Data Breaches scheme, NDB scheme),該計畫源於澳洲早在1988年所定「澳洲隱私原則」(Australian Privacy Principles, APPs)之規定。對象包括部分政府機構、年營業額超過300萬澳幣之企業以及私營醫療機構。

  根據該計畫,受APPs約束的機構於發生個資洩露事件時,必須通知當事人以及可能會造成的相關損害,另外也必須通知澳洲私隱辦公室(Office of the Australian Information Commissioner, OAIC)相關資訊。

  NBD計畫主要內容如下:

  一 、規範對象:

  1. 包括澳洲政府機構,年營業額超過300萬澳幣企業和非營利組織、私營醫療機構、信用報告機構、信貸提供者、稅號(TFN)受領人。
  2. 若數機構共享個人資料,則該告知義務由各機構自行分配責任。
  3. 關於跨境傳輸,根據APPs原則,於澳洲境外之機構必須以契約明定受澳洲隱私法規範,原則上若因境外機構有洩漏之虞,澳洲機構也必須負起責任。

  二 、個資洩露之認定:

  1. 未經授權進入或擅自公開該機構擁有的個人資訊或個人資料滅失。
  2. 可能會對一個或多個人造成嚴重傷害(如身分竊盜、導致個人嚴重經濟損失、就業機會喪失、名譽受損等等)。
  3. 個資外洩機構無法通過補救措施防止嚴重損害的風險。

  三 、OAIC所扮演之角色:

  1. 接受個資外洩之通報。
  2. 處理投訴、進行調查並針對違規事件採取其他監管行動。
  3. 向業者提供諮詢和指導。

  四 、於下列情形可免通知義務:

  1. 為維護國家安全或增進公共利益所必要。
  2. 與其他法案規定相牴觸者。

  五 、通知內容:

  1. 洩露資料的種類及狀況。
  2. 發生個資外洩事件機構之名稱以及聯繫窗口。
  3. 個資當事人應採取之後續行動,避免再度造成損害。

  惟NBD 計畫對於個人資料的安全性沒有新的要求,主要是對APPs的補充,針對持有個人資料的機構採取合理措施,保護個人資料免遭濫用、干擾或損失, OAIC目前也正在規劃一系列有關個資洩漏事件指導方針及導入說明手冊。

相關連結
※ 澳洲個人資料洩漏計畫將於二月施行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7983&no=64&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
美國政府部門共同推動多項鼓勵住宅節能優惠措施

  美國能源部於去年 (2012) 12月21日宣布將投入九百萬美元挹注數項住屋節能科技。除此之外,美國國會亦於今年元旦通過美國納稅人緩稅法案 (American Taxpayer Relief Act of 2012),而其中第四章能源稅延展的第408款將2005年能源政策法案 (Energy Policy Act of 2005) 第1332條所創設的能源效率新屋抵免 (Credit for Energy-efficient New Homes),展期到2013年年底。   據美國能源部長朱隸文 (Steven Chu) 表示,該國家庭平均每戶每年花費近兩千美元於能源相關開銷,而其中有大部分皆因諸如住屋的屋頂、閣樓或牆壁間的空氣洩漏而流失浪費。相關研究並顯示,百分之四十二的能源都喪失於建築外殼(building envelope),包括門、屋頂、閣樓、牆、地板和地基之中。該部於是決定投資建築圍護科技 (building envelope technology)的改進,包涵有高效能的窗戶、屋頂及冷暖器設備。   另方面,國會所通過的美國納稅人緩稅法案展延了包括能源效率新屋抵免(Credit for Energy-efficient New Homes)等十二項能源相關抵免或獎勵措施。其中第408條的展延將使美國國民得其於就其符合能源之星(Energy Start)認證標準之隔熱保溫工程、外部窗戶及門等2005年後所產生裝修支出 (含勞務承攬) 的百分之十,申報最高五百美元的賦稅減免。   2005 能源政策法法案所創設的能源效率新屋賦稅減免原定於2007年終止,之後由2006年的稅收抵免與醫療保健法案 (Tax Relief and Health Care Act of 2006) 延長至2008,再由08年的能源改進與延長法案 (The Energy Improvement and Extension Act of 2008) 展延至2009。其後,10年的減稅、失業保險再授權及工作機會增進法 (The Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010) 將其延伸至2011年年底,而目前通過美國納稅人緩稅法案再將其延至2013年12月31日。

新加坡針對閒置頻譜利用之政策管制架構提出公眾諮詢

  隨著行動通訊需求的提升,各國對無線頻譜資源需求若渴,除了極力釋出更多頻譜資源外,也針對既有頻譜的使用效率加以提升,以滿足頻譜的需求,無線廣播電視為了維護收訊品質,在各頻道之間保留相當大的空白區域,以避免訊號干擾;另一方面,無線廣播電視訊號在人口較少或是有線電視較發達的區域,訊號覆蓋的要求較低,產生許多無訊號的地帶,形成頻譜閒置的狀況。因此目前許多國家將提升頻譜效率的政策,運用在無線廣播電視所使用的頻段上,透過活用上述處於閒置的頻譜資源,滿足更多的無線通訊需求。   目前動態頻譜接取技術就是這樣的一個創新,允許隨機的、免執照使用閒置頻譜,以提高頻譜效率。目前最主流的運用場域在無線廣播電視的頻道上,如前所述,這些頻譜的空白保留區域或是閒置未用的狀況,稱為電視閒置頻譜(TV White Space,TVWS)。TVWS可用以替代類似Wi-Fi功能的無線寬頻通訊,但能夠以更低的功耗與成本加以部署,並擁有更大的涵蓋範圍。TVWS技術亦可以無線連接多種智慧型的終端設備,並具有良好的成本效益,提供更多創新的應用和服務。   新加坡資通訊發展管理局(The Infocomm Development Authority of Singapore,IDA)在2011年起結合相關業者開始進行概念實證運行,目的在驗證新加坡是否具有成功使用TVWS技術的可行性,並於2012年宣布成功。隨後,在IDA的支持下,集合資通訊業者成立「新加坡閒置頻譜先導團隊(Singapore White Space Pilot Group,SWSPG)」的產業協會,在新加坡各地展開了一系列的TVWS先導計畫。   這些先導計畫包括新加坡國立大學的智慧能源控制與智慧電表、新加坡島嶼鄉村俱樂部的寬頻服務、樟宜機場與港口周邊地區提供公共的Wi-Fi熱點。這些先導計畫的作用也在於探詢TVWS技術如何補強既有的寬頻基礎設施,克服新加坡天然環境的限制,提供更多創新的消費和商業應用。這些先導計畫也展現出TVWS可以運用提供良好的多元化的商業服務,深受參與先導計畫的使用者肯定。總體而言,這些先導計畫證明TVWS技術可為新加坡的無線服務提供更多可用頻譜,從而提升了頻譜使用的整體效率。   在這些先導計畫的成功基礎上,IDA認為為了促進TVWS的更大發展,應該展開TVWS設備與使用的的準則定義與確定管制上的的需求,一方面保護既有服務,一方面則必須避免各頻段可能產生的頻率干擾。IDA於2013年6月公布關於TVWS管制架構的公眾諮詢,藉以深入了解產業的需求,制訂完善的管制架構,確保TVWS的發展符合國際趨勢、新加坡的地理條件與市場環境的需求。IDA並希望能於2014年公布TVWS相關設備與服務的準則及管制架構。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權

  2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。   大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。   法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。   大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP