歐盟法院對於羅氏和諾華藥廠涉及聯合銷售Lucentis壟斷市場行為,作成先訴裁定

  歐盟法院(Court of Justice of the EU ,CJEU) 於2018年1月23日就Hoffman-La Roche and Others v Autorità Garante della Concorrenzae del Mercato案(Case C-179/16)作出先訴裁定(preliminary ruling)。本案涉及歐盟競爭法和藥品監管體系之間的相互影響。

  案例事實為:羅氏藥廠的Avastin,原先為抗癌許可藥物,被臨床發現可用作治療老年性黃斑部病變(AMD),但並未經正式核准用於治療AMD,屬於仿單標示外藥物(off-label drugs)。而Lucentis係諾華藥廠一款獲得正式授權核准,作為治療 AMD的眼內注射藥物。

  其中,諾華持有羅氏超過33%的股份,Avastin雖與Lucentis作用機理相似,但Lucentis價格卻相對昂貴,銷售方式由羅氏與諾華合作,諾華可從持股中間接獲得利潤。

  兩家藥廠為了影響、降低Avastin的需求量及阻礙其分銷,雙方協議,對外聲稱兩種藥物含有不同活性成分,散布Avastin仿單標示外使用之安全性和有效性存在疑義的不實資訊。

  2014年時,義大利競爭法主管機關(Autori tà Garante della Concorrenza e del Mercato, AGCM)認為羅氏和諾華兩大藥廠涉嫌藥品市場壟斷,違反歐盟運作條約(Treaty on the Functioning of the European Union, TFEU)第101(1)條,因而裁罰兩家藥廠。

  羅氏和諾華不服裁罰,向義大利Lazio地方行政法院(Regional Administrative Court, Lazio)提起訴訟尋求救濟,遭到駁回;羅氏和諾華繼而向義大利國務委員會(Council of State)提出上訴,義大利國務委員會將此案提交歐盟法院,針對歐盟競爭法的解釋進行先訴裁定。

  最後,歐盟法院認為兩藥廠之行為構成藥品市場的限制競爭,違反歐盟運作條約第101條之規定。

法院判決結果認為:

  1. 當上市許可藥物(marketing authorization, MA)和仿單標示外藥物皆適用治療同一疾病,只要它們具可替代性和兼容性,並且符合製造和銷售的規定,原則上屬於同一個相關市場。只要滿足其他要件,上市許可藥物並不當然決定相關產品市場的範圍。
  2. 非競爭者之間的許可協議可能符合歐盟競爭規則:歐盟法院闡述,這種傳播誤導性資訊的「安排」,目的並非限制任何一方對許可協議的商業自主權,而是為了影響監管機構和醫生等第三方選擇使用Avastin的行為。因此,散播不利於Avastin仿單標示外使用的資訊,此一共同協議,不能被認為是許可協議的附屬部分,係實施協議所必需的。其符合歐盟競爭規則的範圍,作為許可協議中的單獨協議。
  3. 雙方協議散布安全誤導性的不實資訊,針對此兩種相互競爭的醫藥產品,可能構成對競爭規則的嚴重違反:諾華與羅氏公司,在科學證據不確定的情形下,聯合對外向歐洲藥品管理局(European Medicines Agency, EMA)、醫療專業人員和公眾宣稱有關使用該仿單標示外藥物將造成不良副作用的誤導性資訊,以減少其對其他產品施加的競爭壓力,構成對「競爭對手」(by object)的限制。尤其令人憂慮的是,企業可能會透過散播資訊來減少藥品本身的競爭壓力,從而誇大使用其他產品將導致不良反應的可能性。

相關連結
相關附件
你可能會想參加
※ 歐盟法院對於羅氏和諾華藥廠涉及聯合銷售Lucentis壟斷市場行為,作成先訴裁定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7989&no=16&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
舊金山監事會通過決議禁止政府使用臉部辨識

  美國舊金山監事會(San Francisco Board of Supervisors,編按:監事會是舊金山市的立法部門,性質類似議會)於2019年05月通過停止秘密監察條例(Stop Secret Surveillance Ordinance),並將其訂入行政法規(San Francisco Administrative Code)條文,包括增訂第19B章及修訂第2A.20節、第3.27節、第10.170-1節和第21.07節。根據行政法規第19B章,舊金山政府及執法機構未來將不能使用臉部辨識科技,也不能處理或利用任何自臉部辨識科技取得的資訊。   易言之,在公共場所安裝具備臉部辨識科技的監視器,或暗自使用臉部辨識科技尋找嫌疑犯都構成違法行為。然而,法規的修訂不代表舊金山內所有臉部辨識系統將全面停止。由於舊金山機場及港口屬美國聯邦政府管轄,不受地方政府法律所規範,仍可使用臉部辨識科技;而民眾及私人企業並非修訂條文的規範對象,亦可繼續採用。   此次法規的修訂引發高度關注,各界也熱烈討論。反對者表示,法規的修訂使執法機關打擊犯罪的努力付之一炬,危害民眾安全;贊成者則認為,臉部辨識科技過分侵害人民的隱私權和自由權,應對其有所限制。畢竟,臉部辨識科技並非萬無一失,尤其當受辨識者為女性或深膚色人種時,準確率往往下降許多,而有歧視的疑慮。舊金山首開先例立法,成為全美第一個限制政府使用臉部辨識科技的城市,其他城市或國家未來是否會仿效而相繼立法,值得繼續關注。

歐盟立法成員對整體生質燃料目標仍存有不同意見

  為確認是否採行歐盟整體生質燃料目標(即於2020年應達20%)而欲進行協商之前夕,歐洲各政黨團體立法成員們間,對於設定環境永續性基準與將用以種植生產生質燃料作物土地等方面之意見,至今仍分歧不一。   鑑於歐洲環保團體紛盼能儘快看見那些未來將被間接利用來生產生質燃料之土地,其可一併被涵括在正式評估公式之內,來評估對整體CO2濃度影響;因此,各會員國遂轉而朝向歐洲執委會,要求其應提出詳細之規則,並希望能在將相關基準納入整體法律架構之前,完成對間接利用土地所產生衝擊之評估方法與標準的建立。   環保團體代表Turmes指出,日前執委會對歐洲議會所提出之建議提案,已表達其意見並且認為:由於對間接利用以生產生質燃料之土地其未來將對CO2排放產生衝擊方面,尚未獲得足夠之科學性證據來做為日後評估之參考;因此,就整體生質燃油利用之最終版本而言,其認為需將「新方法學」(new methodologies)部分一併納入,以填補前述科學性知識之缺口與不足。   另外,各會員國政府對歐洲議會所提出,要求透過未來利用生質燃料來達到減少碳排放目標時,至少應有40%之比例,需透過運用第二代生質燃料來達成之「附屬目標」(sub-targets),亦表示反對。目前各政府代表僅同意25%,而至於剩下之15%,則將留待後續協商時,再進行討論。   最後,Turmes指出,關於前述次要性目標之確定,歐洲議會將待解決間接利用土地問題後,再做更進一步之協商。

歐盟數位經濟公平稅負指令草案無共識,法國國民議會批准數位服務稅

  2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。   值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。   然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。   目前,法國政府為了回應黃背心運動(Mouvement des gilets jaunes)對於稅制改革的要求,已先行針對數位服務提出了稅收草案,並於2019年4月9日經國民議會(Assemblée Nationale)批准。該法案將針對全球營收超過7.5億歐元之數位服務業者,以境內網路社群利潤,推估大型數位企業之應稅所得,課徵百分之三的數位服務稅。該法案將在2019年5月21日在法國上議院進行審議。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP