何謂Innovation Box Regime?

  Innovation Box Regime係為荷蘭政府推動的租稅優惠政策,用以鼓勵企業從事研發相關活動。在此框架下,於荷蘭境內實施的研發成果收入,稅率僅需被課徵5%(一般稅率約為25%)。意即,凡符合Innovation Box規定之所得,包含已取得專利權之無形資產,或是未取得專利但獲WBSO制度認定獲有無形資產之利益者,皆適用該優惠稅率政策。

  然而,由於該優惠稅率恐引發各國政府為了吸引國外投資,導致競相濫用的情形出現,近年OECD亦給予適度的改善建議措施。對此,荷蘭於適用範圍也隨之調整,自2017年起對於申報優惠稅率之企業改採從嚴認定。

本文為「經濟部產業技術司科技專案成果」

※ 何謂Innovation Box Regime?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7991&no=64&tp=1 (最後瀏覽日:2025/12/30)
引註此篇文章
你可能還會想看
美國微軟、Yahoo和Google違反網路賭博規定遭處鉅額罰款

  美國司法部(Department of Justice)指控微軟、Yahoo和Google三家入口及搜尋網站業者,於1997到2007年間,違反禁止網路賭博之規定,接受非法賭博業者委託刊登線上廣告。   美國司法部認為此三家公司除違反聯邦線上博奕法(Federal Wire Wager Act)禁止賭博之規定以外,另違反聯邦博奕課稅條例,以及各州與地方有關禁止賭博之規定。為此,美國國稅局(Internal Revenue Service)和聯邦調查局亦介入此一案件之調查,並與司法部共同認為微軟、Yahoo和Google等著名入口網站對於社會具有重大影響力,刊登線上賭博廣告之行為不僅違反法規事實明確,對於間接促進相關線上賭博產業之興盛與賭博行為之猖獗亦應負社會責任。   在法院進行實質審理前,三家公司已於2007年12月與司法部達成和解協議,同意支付3150萬美元之罰金(折合台幣約10億元),並配合線上公益及宣導賭博違法等義務。

ITU研議修改國際電信規則

  ITU國際電信聯盟秘書長Dr. Hanmasoun I Toure於2012年5月一場在加拿大舉行的無線通訊座談會中,針對之前國際上傳言聯合國與ITU將嘗試介入管理網際網路之說法進行澄清,並主張自1988年修改沿用至今的國際電信規則(ITRs)已不能應付目前新興之電信商業模式。   新型態的電信商業模式引發網路中立爭議的戰火,已延燒多時。從前的網際網路服務供應業者(ISP),主要遵守網際網路協定,扮演好笨水管(Dum Pipe)的角色。但隨著網際網路內容與各類應用服務的急速成長,各類封包的傳輸加重了原有管道的乘載負擔,再加上網際網路管理技術的演進,業者可透過網管技術對資訊封包的傳輸做更細緻的調節,逐漸形成內容傳輸優先次序差異化的新興商業模式,並且持續發展中。   依目前的技術能力,網際網路中任何內容傳輸的速度,皆能透過寬頻管理機制(QoS)進行調節。過去,QoS在國際通訊上,於各國的終端網路中進行調節工作。但現有的封包式的網路傳輸架構(packet-base networks)動搖了原有的秩序,不僅質量參數(quality parameters)大部分未受明確定義,QoS的角色也逐漸模糊。導致各系統本身無法完全控制跨網資訊傳輸的品質,影響各類服務在使用者的終端設備上所呈現的服務品質。對於需與固網或各類終端設備連結的行動通訊業者而言,如何解決這類問題儼然已成了燃眉之急。   目前ITU剛結束於日內瓦的年會,從會中委員會對其文件是否具備國際效力之議題討論,不難看出ITU對於網際網路管理態度已由被動態度轉為積極。未來ITU更期望,藉由年底舉行2012年國際電信世界大會(WCIT-12),重新修訂舊有國際電信規則(ITRs),引領網際網路的新秩序。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

日本經產省發布《促進資料價值創造的新資料管理方法與框架(暫定)》之綱要草案徵求意見

  2021年7月中旬,日本經濟產業省(下稱經產省)發布《促進資料價值創造的新資料管理方法與框架(暫定)(データによる価値創造(Value Creation)を促進するための新たなデータマネジメントの在り方とそれを実現するためのフレームワーク(仮))》之綱要草案(下稱資料管理框架草案),並公開對外徵求意見。   近年日本在「Society5.0」及「Connected Industries」未來願景下,人、機器與科技的跨界連接,將創造出全新附加價值的產業社會,然而達成此願景的前提在於資料本身須為正確,正確資料的自由交換,方能用於創造新資料以提供附加價值,因此正確的資料可說是確保網路空間連結具有可信性的錨點。為此,經產省提出資料管理框架草案,透過資料管理、識別資料在其生命週期中可能發生的風險,以確保資料在各實體間流動的安全性,從而確保其可信性。   該框架將資料管理定義為「基於資料的生命週期,管理各場域中資料屬性因各種事件而變化的過程」,由「事件(資料的產生/取得、加工/利用、轉移/提供、儲存和處置)」、「場域(例如:各國家/地區法規、組織內規、組織間的契約)」和「屬性」(例如:類別、揭露範圍、使用目的、資料控制者和資料權利人)三要素組成的模組。經產省期望未來能透過三要素明確資料的實際情況,讓利害關係人全體在對實際情況有共同理解的基礎上,能個別確保適當的資料管理,達成確保資料正確之目的。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP