美國商品期貨交易委員會(Commodity Futures Trading Commission ,CFTC) 在2015年09月宣布將比特幣等加密貨幣歸類為美國商品交易法(Commodity Exchange Act ,CEA)中的大宗商品(commodity),與黃金、原油或小麥的歸類一樣,受到委員會的監管,範圍包含在衍生商品契約(derivatives contract)中使用比特幣,或在州際貿易中使用比特幣為詐欺或人為操作(manipulation),自此CFTC開始追查從事加密貨幣衍生商品交易行為,卻沒有註冊的公司。
2018年01月時CFTC起訴Coin Drop Markets公司和其執行長Patrick K. Mcdonnell利用經營加密貨幣期權投資顧問公司,向投資人行銷若接受其投資建議將可獲得200%以上的報酬,卻從未於收取顧客諮詢費後提供任何諮詢服務,並接著關閉公司網站與社群媒體,該公司亦未向CFTC申請註冊,違反美國商品交易法。
對此美國紐約東區聯邦地區法院(Eastern District of New York)的法官Jack Weinstein於2018年03月06日裁定,認定加密貨幣屬市場交易時能保有一致的品質與價值的貨品(goods),具有價值保存(store of value)、金融交易(monetary exchange)的特質,且價格跟大宗商品一樣隨著人們的需求而有起伏變動,符合商品交易法對「商品」包含有形與無形的貨品、服務、權力與利益等的廣泛定義。
由於加密貨幣屬於商品交易法的適用對象,CFTC可對涉及衍生商品市場與現貨市場(Spot Market)的詐欺或操縱行為進行監管。基於以上理由,法院同意CFTC對Coin Drop Markets公司和執行長Patrick K. Mcdonnell的預防性禁制令(preliminary injunction)請求,禁止其繼續參與大宗商品交易。
泰國政府於2022年12月22日在政府公報上發布規範數位平臺義務的「數位平臺業務營運通知皇家法令」(the Royal Decree on Operation of Digital Platform Services Which Require Notification,以下簡稱皇家法令),鑒於數位平臺治理的不足與電子交易安全性,泰國政府發布皇家法令用以補充電子交易法(Electronic Transaction Act)之空缺。泰國政府要求數位平臺採取必要措施以符合皇家法令,將於2023年8月20日生效。 皇家法令將「數位平臺」定義為透過電腦網路連結商家、消費者與使用者從而產生電子交易的電子中介平臺。營收達到180萬泰銖的自然人、或營收達到5000萬泰銖的法人、或在泰國境內每月活躍用戶達到5000人的數位平臺需要負擔一定義務,包含向主管機關電子交易發展署(Electronic Transactions Development Agency, ETDA)通報其相關資訊、向ETDA提供年度報告、變更條款的透明度義務、以及境外數位平臺需指定代理人等。此外,數位平臺在提供服務或對數位平臺相關資訊進行修改時,有通知平臺用戶必要資訊的義務。 單一服務營收每年超過3億泰銖、或整體服務營收每年超過10億泰銖、或泰國每月活躍用戶超過總人口10%的數位平臺則為大型數位平臺,大型數位平臺相較於其他數位平臺需要負擔額外義務,除前述數位平臺義務之外,大型數位平臺需要實施風險評估、風險管理措施、系統安全措施與危機管理措施等額外義務。 自歐盟制定數位服務法(Digital Services Act)後,各國陸續建立數位平臺治理制度。經觀察,泰國政府是基於維護電子交易安全目的要求數位平臺負擔相關義務,與歐盟所關注的監督數位平臺與保護使用者基本權利似有所區別,規範對象門檻相比數位服務法來得低,義務也比數位服務法來得少。同時其他亞洲鄰近國家也開始關注數位平臺治理,如南韓、新加坡等也在研擬數位平臺治理法制,各國數位平臺治理法制之發展與走向值得持續觀察。
韓國發布人工智慧基本法韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。
中國大陸修定「網絡交易管理辦法」,課與第三方交易平台多項經營責任中國大陸國家工商行政管理總局為加強網路交易消費者保護,在2014年03月15日起實施「網絡交易管理辦法」,就企業經營者責任新設多項規定。特別是針對第三方交易平台業者,辦法要求其建立交易規則、消費資訊保存、不良訊息處理、消費糾紛調解管道等管理制度,以確保平台服務品質。同时要求平台業者建立審查制度,對申請進入平台從事經營活動之賣家,進行身分審查與建檔,透過以網管網,達成有效率的網路身分管理。 另外,為確保網路交易市場秩序、公平競爭,本辦法亦例示多項不公平競爭行為態樣,包括任意調整信用評價、傷害他人商譽等影響交易秩序之欺罔行為,皆受到明文禁止。甚至在商標侵權情況中,平台在接收到侵權通知時,必須積極採取必要措施,否則就因此損害擴大部分,將與侵權行為人共同承擔連帶責任。 考量在兩岸近期簽署之「海峽兩岸服務貿易協議」中,陸方已承諾對台開放「在線數據處理與交易處理業務」之電子商務網站經營,待將來協議完成相關程序生效後,台灣電子商務業者在進入大陸市場經營交易平台時,勢必受到本辦法規範,實應留意相關要求以避免觸法。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。