我國3G業務執照將於2018年底屆期,由於我國3G業務用戶數仍高,又我國第三代行動通信業務管理規則第48條第2項設有執照屆期後主管機關得為彈性處理之明文,故3G執照是否僅限於收回重新釋出頻譜,或是有其他更適宜之方式,實值進一步探討。 本研究首先借鏡國際上相關執照屆期重新釋出之執行措施與配套方案進行說明分析;其次,由市場面(我國行動通訊市場營運現況)與法制面(預算法、電信法及相關管理規則),探討我國3G執照屆期處理政策;最後提出相關建議,以供相關機關未來施政時參考。
隨著NFT持續延燒,韓國不少藝術家選擇透過NFT之模式進行數位交易。然2021年11月,韓國金融監督委員會認為NFT不屬於數位資產,也不承認NFT相關之數位交易。根據韓國聯合新聞通訊社(YNA)2022年7月14日報導,韓國科學技術情報通信部( MSIT)與韓國網路振興院(KISA)宣布成立元宇宙/NFT安全委員會,以檢查元宇宙和NFT等虛擬融合經濟的傳播所產生的新安全問題,並強化產業合作。 該委員會由該國元宇宙和NFT相關的平台公司、安全產業、合作社組成,旨在振興安全可靠的虛擬融合經濟產業,分析和共享網絡威脅、安全技術及損失案例,並針對各種安全問題尋求主動響應和解決方案。 虛擬數位資產本身存有爭議,加上公鏈Terra的崩盤造成韓國28萬名投資人遭受巨大損失,使作為主管機關的韓國金融委員會(FSC)和金融監督院(FSS)壓力倍增,宣布制定《數位資產基本法》大綱框架,目前此法將加密資產定義為非法幣資產、非金融商品資產之「第三類資產」,並強調未來將有加密資產委員會進行專門管理。韓國擬積極加強監管虛擬數位資產,擬徹底管理加密投資風險,並加強監管杜絕非法吸金與場外交易。《數位資產基本法》預計於2023年上路。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟提出人工智慧法律調和規則草案歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。 歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。 本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式: 一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。 二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。 三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。 AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告德國資料倫理委員會(Datenethikkommission, DEK)於2019年10月針對未來數位化政策中的重點議題發布最終建議報告;包括演算法產生預測與決策的過程、人工智慧和資料運用等。德國資料倫理委員會是聯邦政府於2018年7月設置,由多位學者專家組成。委員會被設定的任務係在一年之內,制定一套資料倫理標準和指導方針,作為保護個人、維持社會共存(social coexistence)與捍衛資訊時代繁榮的建議。 最終建議報告內提出了幾項資料運用的指導原則,包含: 以人為本、以價值為導向的技術設計 在數位世界中加強數位技能和批判性思考 強化對個人人身自由、自決權和完整性的保護 促進負責與善意的資料使用 實施依風險調整的監管措施,並有效控制演算法系統 維護並促進民主與社會凝聚力 使數位化戰略與永續發展目標保持一致 加強德國和歐洲的數位主權