英國政府為達成於2021年使完全無須人為操控的自動駕駛車輛可在英國公路上行駛之目標,提出新保險責任制度。透過自動駕駛和電動車輛法案的提出,將為自動駕駛車輛可合法上路行駛鋪路,從而帶動自動駕駛車輛產業發展。整體而言,一旦此立法正式通過,除了代表英國政府正式樹立自動駕駛車輛的保險框架里程碑外,也象徵英國朝向2021年的目標又更邁進一步。
美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。 於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。 於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。 綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。
基改作物MON810,德法命運大不同德國今年1月底通過新修法,使國際知名生技公司孟山都主要用做於飼料的基改抗蟲玉米MON810得以在德國更加順利種植。 原來德國法律規定基改作物與其相同種類傳統非基改作物間的種植距離為150公尺,與有機作物間的距離則為300公尺;但這項距離的規定對於農田面積多數不大的德國西部來說始終是一個問題,新法為此提供了一項新的出路,亦即基改作物種植者可與其相鄰傳統作物種植者簽訂契約來排除前述種植距離的限制,此項契約雖可能使傳統作物必須標示成為基改作物,但預估仍不會減低傳統作物種植者簽訂契約的意願。 專家評論德國這項新的立法仍然為德不卒,由於新立法並未將德國公開註冊制度中基改作物需揭露詳細的種植地點改為只需揭露種植地區,使得反基改分子仍將得以順利找到基改作物並加以破壞。另外,此次亦未修正的鄰田污染賠償責任使專家擔憂基改研究仍將限於校園內。 MON810在另一端的法國則顯得命運多舛,自去年秋天起,法國引用歐盟法的防衛條款(Articles 23 of the EU Deliberate Release Directive)來暫時禁種此一抗蟲玉米,於今年1月初,法國政府為此項問題所組成的委員會向環境部長提交調查結果,委員會主席並對外表示嚴重質疑MON810的安全性,並已取得大量MON810對動、植物負面影響的科學證據,使法國政府於1月中宣佈延續去年的禁種令。但專家質疑委員會主席對於調查報告之陳述失之客觀,由於調查報告中關於MON810商業種植對於環境影響的問題仍懸而未定,事實上並未存有委員會主席所謂的「嚴重質疑」。