美國加州公共事業委員會提出自動駕駛車輛試點計畫

  加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。

  第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。

  參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。

  此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。

本文為「經濟部產業技術司科技專案成果」

※ 美國加州公共事業委員會提出自動駕駛車輛試點計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8013&no=64&tp=5 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
中華人民共和國《出版管理條例》之介紹

歐盟執委會關切奈米科技對於食品安全之影響

  近年來,奈米科技已多方使用於食品製造業中,舉凡食品的殺菌、保存或食材的包裝等,皆為適例。然而,隨著奈米科技的影響層面逐漸擴大,無論係其功用的研發或風險的防範,仍有進一步研究之必要。   歐盟執委會(European Commission)根據2007年3月其新興健康風險科學委員會(SCENIHR)所提出之報告,認為應加強認識奈米科技對於食品安全之影響,遂邀請歐洲食品安全局(EFSA)就該領域提出科學看法。至2008年10月14日,歐洲食品安全局科學委員會即公布「奈米科技對於食品和飼料所引起之潛在風險(Potential Risks Arising from Nanoscience and Nanotechnology on Food and Feed Safety)」草擬意見,其內容係說明奈米科技應用於食品製造業之多種樣態、人為奈米材料(engineered nano materials,ENM)於食品或飼料製造過程中所產生之作用,以及判斷現有之風險評估方式能否合於需要。   該草擬意見歸結數項結論如下: (1) 因人為奈米材料之體積微小且具有高表面積,於人體吸收時較一般物質更容易產生反應。 (2) 關於化學物質於奈米尺寸下將產生何種變化,迄今無法做出令人滿意之科學論斷,因此就安全性與相關數據的累積,仍需要個別檢視。 (3) 建議應針對風險評估一事設置國際基準,且該基準可同時適用於人為奈米材料及一般化學物質。 (4) 食品與飼料中含有人為奈米材料者,於風險評估時應包括該材料特性之敘述,並進行毒理研究分析,使資訊蒐集更為完備。   由於人為奈米材料不確定之事項甚多,因此需要更豐富的資料加以釐清;而該草擬意見除提供歐盟執委會評估現行法制、研究可行措施外,亦向公眾廣徵回應;民眾可於2008年12月1日前,提供歐洲食品安全局相關科學證據或意見,待該局進行彙整後,將與歐盟會員國商討後續事宜。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

內政部、經濟部發佈「新建建築物節約能源設計標準」,自七月一日施行

TOP