英國電子零售業者Carphone Warehouse在2015年遭到網路攻擊,造成逾300萬客戶及1000名員工的資料外洩,外洩的資料包括客戶的姓名、地址、電話號碼、出生日期、婚姻狀況及1.8萬名客戶的金融卡資訊。
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認為涉及之個人資料嚴重影響個人隱私,使得個人資料有被誤用的風險。ICO進一步調查後並發現,駭客僅是透過有效的登入憑證,就能藉由WordPress軟體存取系統,此事件亦暴露該組織技術安全措施之不足,因受影響系統中使用的軟件的重要元素已過時,且公司未能執行例行的安全測試。ICO認為,像Carphone Warehouse此類規模龐大的公司,應積極評估其資料安全系統,確保系統穩健而避免類似的攻擊。
據此,ICO判定該公司缺乏妥善的安全措施保障使用者資訊,已嚴重違反《Data Protection Act 1998》資料保護法,判罰40萬英鎊。
從今年5月25日起,隨著GDPR的生效,法律將更加嚴格。對此,ICO亦發布了有用的指導,包括GDPR指南,現在採取的12個步驟和工具包。國家網絡安全中心(NCSC)也為組織為保護自己所採取的步驟提供了有用的指導。
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
拜登政府宣布採取促進負責任AI創新之新行動,以保護美國人民權利與安全拜登政府於2023年5月4日宣布將採取促進負責任AI創新之新行動,表示公司於部署或公開其產品前,應致力於降低AI風險,並強調風險管理與保障措施的重要性,以防止AI對個人與社會造成潛在危害。此外,拜登總統於2月簽署「透過聯邦政府進一步推動種族平等和支持弱勢群體」行政命令(Executive Order on Further Advancing Racial Equity and Support for Underserved Communities Through The Federal Government),指示聯邦政府機關在設計和使用AI等新技術時,應避免偏見,並保護公眾免受演算法歧視。促進負責任AI創新之新行動包括: 一、投資負責任AI的研發 美國國家科學基金會(National Science Foundation)宣布撥款1.4億美元以啟動7個新的國家AI研究所,未來全美將有25個國家級AI研究所。除有助於促進公私部門之間合作外,將強化AI研發基礎設施、支持多元化AI勞動力發展,及推動氣候、農業、能源、公共衛生、教育與資安等關鍵領域之突破。 二、公開評估現有的生成式AI系統(generative AI systems) Anthropic、Google、Hugging Face、微軟、NVIDIA、OpenAI和Stability AI等領先AI開發商將參與AI系統獨立公開評估,以評估其模型是否符合AI權利法案藍圖(Blueprint for an AI Bill of Rights),及AI風險管理框架(AI Risk Management Framework)所提出之原則與實踐,並使企業及開發人員能就所發現問題,進一步採取解決措施。 三、提出政策引導聯邦政府減輕AI風險及提升AI利用機會 美國行政管理預算局(Office of Management and Budget)宣布,將於2023年夏季發布有關聯邦政府機關各部門使用AI系統之政策指引草案,並徵詢公眾意見。
美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。 隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。 科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。 整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。
美國廣告網路平台服務提供業者針對抑制網路侵權發佈作業準則Google、Microsoft、Yahoo、AOL、24/7 Media、Adtegrity、Condé Nast、SpotXchange數個以美國為主要營運基地的廣告網路平台服務提供者於7月中針對抑制網路侵權聯合發佈一套最佳作業準則,規劃透過減少涉嫌侵權、盜版網站的廣告收益分配,達到抑制網路侵權的效果。 在這個自發性參與的準則中,廣告網路平台服務業者將維持並公告其遏阻與避免販售盜版物品、侵害著作權網站的政策,根據該作業準則,廣告網路平台業者將接受並處理來自權利人有關有疑慮的網站通知、提供合適的通知內容參考指引、指定負責收受侵權通知的窗口,並針對相關控訴採取適當的調查,相關業者將確保其內部處理程序能落實此一作業準則要求。 針對此一發展,著作權產業團體如美國唱片業協會、美國電影協會對此一準則皆大表贊成與歡迎,而公益團體Public Knowledge亦讚許此一準則相當明智,同時也呼籲內容產業團體可以發展其保護網路使用者與媒介的相關作業準則。