德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。

  德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。

  例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何?

本份指南則提出六項建議:

  1. 促進企業內部及外部訂定相關準則
  2. 提升產品及服務透明度
  3. 使用相關技術應為全體利益著想
  4. 決策系統的可靠性仍取決資料的準確性。
  5. 重視並解決解決機器偏差問題
  6. 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

本文為「經濟部產業技術司科技專案成果」

※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8070&no=67&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
日本內閣府就著作權法提出部分條文修正案

  日本內閣府於2018年年初提出著作權法部分條文修正案,本次修正集中在合理使用之相關規定,並於5月17日經參議院審議通過。文部科學省在修正概要說明中,提及本次修法放寬合理使用範圍,包括下列幾種情事: 為促進大數據所提供之加值服務或技術創新開發等目的,且不致影響著作之市場價值(如圖書檢索加上部分書籍資訊、論文比對檢索顯示部分原始論文內容)。 老師以教學或提供學生預、複習為目的,利用他人著作所製作之教材,以網路傳輸之方式,上傳後供學生下載使用。 為提供視障者閱讀或因肢體殘障而無法翻閱書籍之人,而將書籍文字以錄音方式呈現。 將美術館或博物館之展出品,製作成可使用於平板電腦之數位檔案,並用於展館導覽上。   上述情形均無須得著作權人之同意。日本政府期待透過本次修法, 在教育推動、便利身障人士及美術館之數位典藏利用等相關數據資訊產業發展上,有效緩解可能產生侵害著作權之問題,故此次條文修正案及後續相關立法動態值得密切注意。

Google個資隱私權政策違反歐洲資料保護指令,六國將聯合採取法律途徑

  2012年3月Google將世界各地總共60個相異的個人資料隱私權政策統一後,即受到歐盟個人資料保護機構「第29條工作小組」的關注,該小組認為Google修訂後的個人資料隱私權政策違反歐洲資料保護指令(European Data Protection Directive (95/46/CE)),將難以讓使用者清楚知悉其個人資料可能被利用、整合或保留的部分。同時,Google亦可能利用當事人不知情的情況下,大量利用使用者個人資料。因此,2012年10月歐盟要求Google在4個月內對該公司的個人資料隱私權政策未符歐盟規定者提出說明,惟至今Google仍無回應。因此,歐洲6個國家,包括法國、德國、英國、義大利、荷蘭及西班牙的個資監管機構,將聯合審視Google的個人資料隱私權政策是否違反各國的法律,並依據各國法律展開後續措施,如鉅額罰款等。法國之資訊自由國家委員會(Commission nationale de l'informatique et des libertés,簡稱CNIL)率先表示,若Google於4月11日前未改善其資料隱私權政策,法國將首先採取法律行動。然Google對此僅簡單回應,表示其資料隱私政策尊重歐盟的法律,且可以讓Google提供更簡單、更有效率的服務。

歐盟執委會發布聲明將協助全球紓困以對抗新冠病毒

  歐盟執委會(European Commission, EC)於2020年4月8日發布新聞稿,說明歐盟將制定紓困計劃,投入資金支援全球盟國對抗新冠肺炎。歐盟的行動將側重於解決急迫的衛生問題以及人道主義需求,加強盟國的健康、供水和公共衛生環境,及協助盟國發展對抗流行病的研究和準備能力,減輕疾病對國家經社之影響。   此次計劃立基於「Team Europe」,「Team Europe」是歐盟執委會因應疫情採取全球及跨境協調的紓困方案,強調整併來自歐盟、歐盟成員國及金融機構──特別是歐洲投資銀行(European Investment Bank, EIB)和歐洲復興開發銀行(European Bank for Reconstruction and Development, EBRD)──的資金,提供全球盟國立即而精準的援助,目前已投資超過156億歐元的資金。而在此次全球紓困中,歐盟短期面提供盟國資金,長期面則協助解決盟國因疫情引發的社會經濟問題。   本次紓困計畫區分為三大部分,分別為: 5.02億歐元用於應急行動(Emergency response actions):包括提供資金生產個人防護設備和醫療設備、降低各國出口障礙以確保供應鏈完整(特別是基本醫療用品和藥品的供應鏈)及支援聯合國和世衛的相關應對政策等; 28億歐元用於支援社會研究、衛生系統與供水系統:支援盟國建立反應快速的衛生和社會保護體系、對疫情嚴重國家進行疫苗配送與補貼、專家培訓和流行病學監測(epidemiological surveillance),並且強化非洲、拉丁美洲、加勒比海地區以及亞太地區的區域衛生組織發展。 122.8億歐元針對疫情後經濟和社會影響進行紓困:提供盟國直接預算和優惠資金、由歐洲投資銀行提供盟國公部門貸款(特別是醫療保健設備用品之貸款)以及透過國際貨幣基金組織(International Monetary Fund, IMF)對西巴爾幹地區及鄰國提供金融援助等。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP