德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。

  德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。

  例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何?

本份指南則提出六項建議:

  1. 促進企業內部及外部訂定相關準則
  2. 提升產品及服務透明度
  3. 使用相關技術應為全體利益著想
  4. 決策系統的可靠性仍取決資料的準確性。
  5. 重視並解決解決機器偏差問題
  6. 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

本文為「經濟部產業技術司科技專案成果」

※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8070&no=67&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
香港CEPA第三次補充協議關於知識產權保護之內容與影響

美國奈米容器 挑戰舊有法規

  隨著奈米科技之迅速發展,相關議題焦點已擴及美國食品包裝業,並有待進一步明確規範,以保障消費者安全。由新興奈米材料計畫(Project on Emerging Nanotechnologies,PEN)以及食品雜貨製造協會(Grocery Manufacturers Association,GMA)於2008年6月提出「確保奈米材料使用於食品包裝之安全性(Assuring the Safety of Nanomaterials in Food Packaging: The Regulatory Process and Key Issues )」研究報告,結合產、官、學與公益團體之意見,分別就食品生產過程中,研究「應於何時評估奈米材料之毒性」以及「奈米包裝材質對於食物的潛在危機」。   該報告內容指出,以往係由美國食品暨藥物管理局(FDA)與環保署(EPA)負責管制一般食品包裝材質;FDA以「聯邦食品、藥物及化妝品法」(Federal Food, Drug and Cosmetic Act,FEDCA)中的食品添加物(food additive)條款為規範主軸,而EPA則以「聯邦除蟲劑、殺菌劑及滅鼠法」(Federal Insecticide, Fungicide, and Rodenticide Act,FIFRA)作為管理食品包裝材料之依據;近年來業界認為奈米材料有助於保存食品,漸而應用於食品包裝技術上,惟現行關於奈米微粒之資訊仍未完全,且舊有法規已不敷使用,因此必須蒐集大量數據資料並訂立明確規範,盡可能減低包裝容器所產生的潛在危機,以確保消費者與食品成分皆安全無虞。   該項研究採公開對話方式,區分為法制、科技與產業等三個小組,各有其研究目標: (1)法制面:確立奈米尺寸之定義、檢驗奈米尺寸物質是否能列入食品添加物之範疇。 (2)科技面:分析奈米微粒之物理與化學性質、評估使用奈米材料對於環境的衝擊。 (3)產業面:嘗試建立奈米包裝材質之生命週期。   即便該報告尚未能指引出明確的解決之道,其仍出於增進對話之目的,以表格整理現有資料並提問,藉以促使產業與政府機關進一步思考問題之方向,並尋求科學性的解決方式。

英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告

  英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。

美國4州及司法部指控資料處理商(Agri Stats)的資料共享行為涉及聯合行為

美國明尼蘇達州、加州、北卡羅萊納州及田納西州之檢察總長於2023年11月加入「美國司法部(U.S. Department of Justice, DOJ)在同年9月對於肉品產業資料提供者(Agri Stats, Inc.,以下簡稱Agri Stats)提起的反壟斷訴訟」中,主張Agri Stats透過報告方式將肉品數據資料分享給訂閱服務之肉類加工商,此類資料共享行為削弱了市場競爭關係造成聯合行為,違反了休曼法(Sherman Act)。以下先就此案背景進行說明,以釐清此案象徵意義。 於2023年2月,美國司法部反壟斷部門撤回3項與資訊共享相關的聲明,該3聲明是為了醫療保健產業而發布,其中就資料分享之安全使用方式亦可讓其他產業的資料提供業者評估其資料分享行為是否造成反壟斷行為,惟在目前AI/演算法技術變革之下,利用共享所得之資料反推競爭對手之競爭策略具有可行性,因此當年認為有助於促進競爭之資料共享行為,現在反而有造成聯合行為之可能,故廢棄該3項已過時的聲明。 於2023年9月28日,美國司法部反壟斷部門於明尼蘇達州指控Agri Stats違反休曼法。Agri Stats為專門彙整、分析美國豬肉與家禽(肉雞、火雞)相關商業資料的資料處理商,並將其分析報告提供給具競爭關係的肉品加工商,肉品加工商可透過將Agri Stats分析報告反推以監控/預測出競爭對手之價格、供應量、營運計畫等,並依分析報告建議進行價格調高與減產的行為,而被美國司法部認定為聯合行為。 該訴訟所涉及的肉品加工商占了全美家禽(肉雞與火雞)銷售量的9成以上,豬肉銷售量的8成以上。目前已有前述4州加入該訴訟,法院後續會如何認定,將影響產業間的資料交換作法,也顯現出資料商業化前須先做好資料管理,確保在合規的範圍內進行資料利用,國內廠商可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》對自身資料管理機制進行檢視。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)

TOP