歐盟議會於2018年7月5日針對新版著作權指令案進行投票,其中278票贊成、318票反對、31票棄權,否決新版著作權指令案。
指令案被否決之主要原因在於其中具爭議性之Article 11、13。Article 11規定,網路資訊整合平台業者(aggregation service)未來在引用他人所發佈之新聞資料或以超連結,連結至該新聞網頁時,非營利之平台業者需取得出版者之同意,營利之平台業者則需支付使用費,外界將此稱為「超連結稅」(link tax);而Article 13則規定,網路資訊整合平台業者需確保上傳之內容未侵害他人之著作權,否則當上傳資訊有侵害他人著作權之情形,平台業者亦應負相關責任。
非營利之網路資訊整合平台業龍頭之一〈維基百科(Wikipedia)〉認為該指令案之通過恐將對其造成影響,為表達抗議於2018年7月4日關閉維基百科西班牙、義大利及波蘭版,而其共同創辦人之一Jimmy Wales亦於個人Twitter上發文表達反對意見。惟另一方面,歐洲電視台、出版業者及Paul McCartney(披頭四成員之一)等藝術創作者則認為,新版著作權指令案將有助於著作權之保護,而表達支持之立場。
新版著作權指令案將於修正後,於同年9月份再付議會表決。因指令案通過與否,將對相關平台業者造成實質上之影響,後續動態值得繼續追蹤及注意。
美國知名玩具娛樂商「孩之寶」(後稱Hasbro)日前宣布以40億美金收購知名卡通「佩佩豬」之加拿大母公司「娛樂一體」(Entertainment One Ltd,後稱eOne),Hasbro將藉著eOne所擁有的學齡前動畫資產,透過相關智財組合與品牌布局,再度擴大其在玩具娛樂市場中之優勢地位。 eOne旗下擁有《佩佩豬》(或譯為粉紅豬小妹;Peppa Pig)、《睡衣小英雄》(PJ Masks)、《瑞奇衝衝衝》(Ricky Zoom)、《小杯與小龍:萬能服務》(Cupcake & Dino: General Services)等知名動畫品牌,以及強大的故事主導特質與家庭導向故事述說能力,Hasbro表示該些優勢將吸引遊戲玩家、動畫粉絲與家庭等多元視聽者與消費者,以至將該些動畫拓展至全球。 而Hasbro已擁有許多知名玩具品牌,包括彩虹小馬(My Little Pony)、培樂多黏土(Play-Doh)等,經過本收購交易將能擴大其品牌智財之授權營收,並將該些新增動畫之智財,朝向玩具、遊戲、影片、電視、音樂及家庭品牌等多面向之全球性經營。 目前eOne董事會於10月17日以99.9%之票數同意該交易案,並已獲得美國與德國等相關監管單位之認可,尚待加拿大官方同意。期待後續Hasbro與eOne共同藉著品牌建立、創造力與故事述說等優勢能力,創造更多品牌智財之可能性。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
日本經產省發布《資安產業振興戰略》,強化資安產業與技術基礎日本經濟產業省(簡稱經產省)於2025年3月5日發布《資安產業振興戰略》(サイバーセキュリティ産業振興戦略),目前日本大多使用海外製造的資安產品,且相當重視使用產品的實際體驗,進而導致日本國產資安產品難以銷售獲利,陷入缺乏資金開發投資的惡性循環,為求打破現狀促進日本資安產業發展,具體因應政策如下: 1. 創造有利資安新創企業進入市場的環境:彙整具有前景的資安新創企業名單,提供予政府參考,讓政府率先試行導入資安新創企業提供的產品與服務,展示實際使用資安產品與服務的成果,藉此提升資安新創企業知名度,降低其進入市場的難度。 2. 發掘具有潛力的技術及具市場競爭力之產品或服務:實施競賽形式的獎金制度,發掘可提升資安、解決問題,對社會具有貢獻的技術,並推動約300億日圓的研發計畫,促進技術實際落地運用,改善不利開發投資的環境。建立系統整合商、日本國產產品與服務供應商之間的媒合機制,讓供應商可在產品銷售過程中發揮影響力。 3. 充實高階專業人才拓展國際市場:擴大高階專業人才培育計畫,提升並宣傳資安人才的職業魅力,支援產業向海外發展,與合作國家共同促進企業與人才交流,以因應資安產業整體基礎不足,難以培育人才,拓展國際市場等問題。
英國國家統計局政府資料品質中心發布《政府資料品質框架》英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).