「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。
該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。
本文為「經濟部產業技術司科技專案成果」
美國國會能源及商業委員會( Energy and Commerce Committee )於 2006 年 3 月 8 日 透過匿名表決的方式,通過「防止詐欺取得通聯記錄法」草案( Prevention of Fraudulent Access to Phone Records Act ),希望透過立法的方式保障消費者之隱私權,並要求電信公司加強保護消費者之通聯記錄。由於各黨派對本法案已有共識,故預計於近期排入國會議程後,順利完成立法。 根據美國國會議員 Joe Barton 表示,美國目前對於電話通聯記錄的取得並未進行規範,任何人均可輕易的透過網路購得相關資料。由於通聯記錄中往往包含許多個人之隱私或是敏感性資料,部分不肖之徒(如身份竊盜者、非法的個人資料販賣商)會藉此故意取得個人通聯記錄,以窺探隱私,甚或以此進行犯罪行為。 有鑑於此,美國計畫透過本法案,嚴格禁止以詐騙方式取得電話記錄的情形,並賦予聯邦公平交易委員會( Federal Trade Commission )有權對違反本法規定者進行民事處罰。此外,本法案亦要求電信業者必須符合本法規定之資料安全保護的要求,若違反本法之規定而造成損害,單一案件得處以最高 30 萬元之罰鍰,若為多重案件,則得處以 10 萬元以上 300 萬元以下之罰鍰。
從無線上網壅塞困境-看Wifi發展趨勢近年來,由於行動載具興起與數位內容蓬勃而生,導致各國於WiFi網路與行動網路皆面臨不敷使用之困境。為了增加WiFi頻寬與緩和行動網路壅塞,FCC主席Julius Genachowski於國際消費電子展(International Consumer Electronics Show)宣布將於5 Ghz頻段釋出共195 MHz之無需執照頻譜(Unlicensed Spectrum),以解決Wifi困境,並促進快速、高容量的「Gigabit Wi-fi」之發展。FCC現階段仍須與其他聯邦部門合作,協調該頻段中WiFi與其他既有用途之干擾與共用的問題。即便如此,這仍是自2003年以降,將無需執照頻譜釋出給WiFi最多的一次,且估計能將現有WiFi提升35%效率。 另一方面,對於部分電信商將推動之多項措施,如建設40,000個小型基地台(Small Cells)、以Wifi Hotspot 2.0之規格,導入商用異質網路(Hetnet),以充分利用WiFi於2.4GHZ(共83.5MHz)與5GHz(共555MHz)之頻段等,FCC主席Genachowski均表樂觀其成。上述措施可讓客戶在免額外付費、且不須複雜驗證下,藉由SIM卡自動導入WiFi,Genachowski認為此舉不僅充分利用頻譜資源、增加智慧型手機與平板銷量外,亦可改善目前行動網路壅塞之問題。 綜上所述,可窺見FCC將利用「Gigabit Wi-fi」之優勢,解決使用者於公眾頻繁往來之地點,諸如機場、市中心與大型會議場所等處,WiFi使用壅塞之問題。而此舉亦可解決家中有多個用戶、或同時使用不同載具時,造成網路緩慢之問題;至於,在行動網路上,亦有助於紓解行動數據流量,增加網路品質,促進更多APP孕育,帶動更多商機。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。