何謂日本「促進整合產官學共同研究的大學概況調查書」?

  「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。

  該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。

本文為「經濟部產業技術司科技專案成果」

※ 何謂日本「促進整合產官學共同研究的大學概況調查書」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8090&no=0&tp=5 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
國際能源總署發布電力市場設計報告,提供批發電力市場監管制度政策建議

國際能源總署(International Energy Agency, IEA)於2025年11月26日發布《電力市場設計:深化既有優勢、補足制度缺口(Electricity Market Design:Building on strengths, addressing gaps)》報告(下稱電力市場設計報告),旨在提供批發電力市場監管制度之政策建議,並深入分析短期、中長期及配套機制等(Complementary Mechanisms)電力市場型態。 IEA指出,世界各國批發市場價格波動,已達到2019年的5至9倍,而歐洲則因自2021年後,批發電價較2019年上升超過4倍,促使當局採取緊急措施以抑制電價上漲,凸顯出具韌性、效率的電力市場的重要性。 根據電力市場設計報告分析,在短期市場(日間、日前和即時市場)方面,歐洲部分地區、美國、澳洲與日本電力市場中,過去5年電力可靠度超過 99.9%。短期市場促成了高效率的排程、透明的價格形成機制,並讓多元資源與各類參與者廣泛參與。 然而,隨著能源變動性與去中心化的程度提高,IEA建議,短期市場應進一步釋放電力彈性並強化協調功能,伴隨天候變化的再生能源滲透率增加,以更細緻的時間與空間粒度(granularity)反映實際情況,將日前市場的時間間隔縮短至15分鐘或更短,並將大型投標區域劃分為較小的區塊,以反映電網的實際負載狀況。 至於長期市場方面,泰半並未回應日益增加的投資需求與不確定性風險,市場參與者可用的風險管理工具有限;而購售電合約(Power Purchase Agreements, PPAs)在長期市場薄弱的情況下,澳洲、日本、歐洲與美國等國,約有半數至75%的CPPA係由年營收超過10億美元的公司簽署,較小型參與者的採用程度有限。特別是「隨發隨付型」(pay-as-produced)的PPA亦可能與短期市場訊號不相匹配,影響市場參與者的判斷。因此,僅憑PPA本身,無法完全取代運作良好的長期市場所應發揮的功能。 因此,IEA進一步建議,引入「政府或公共信用擔保機制」(public credit guarantees)以降低信用門檻,或是設立可採購長期合約並提供買家短期合約轉售電力的中央機構(central entity that contracts long term and resells shorter-term contracts to buyers);而在市場配套機制方面(包含躉購費率、差價合約等),必須與短期和長期市場緊密協調,以避免產生非預期的負面效果。設計不佳的機制可能削弱價格信號、增加系統成本並製造不確定性。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

美國健康保險制度下的個人資料安全保護隱憂

  為降低美國人民在醫療保險費用的支出,同時加強管理現有的保險產業,同時提供美國人民一更易負擔的醫療保險制度,美國總統歐巴馬自上任以來遂特別加強推動美國健康保險制度,與相關現有醫療保險制度的建置與改革,並於2010年3月23日通過「病患保護與平價醫療法案」(The Patient Protection and Affordable Care Act,本法暱稱Obamacare),並計劃於今(2013)年10月正式啟動上路。   為集中且便利相關機構快速讀取單一個人之相關資訊,Obamacare計畫透過聯邦數據服務樞紐(The Federal Data Services Hub)的建置,彙整目前美國各單一政府單位所保有之全民個人資料,該類資料涵蓋個人醫療、教育、和財務等相關資訊,提供各州政府單位機關有需求時得以讀取。然而,儘管該服務樞紐的用意係為提供更完整的個人資料,然而其卻也因其本身具集中單一個人資料於一身的特性而受到各界的質疑。反對人士認為,由於該服務樞紐彙整龐大單一個人資料,因此若其未建立完善資訊安全機制,而遭受到不肖駭客入侵竊取個人資料的話,所造成的後果將影響甚遠,再加上未來將管理服務樞紐的美國衛生及公共服務部(The Department of Health and Human Services, HHS),遲遲未能讓外界信服其已建立充分的資訊安全保全系統來保障全美國人民的個人資料,因此反對人士對於該服務樞紐對於個人資料安全與隱私的保全能力感到堪慮。   根據美國隱私法(Privacy Act of 1974),美國政府需提供適當的隱私保全機制來保障美國人民的個人資料,同時,美國聯邦資訊安全管理法(Federal Information Security Management Act of 2002)亦要求美國政府需確保美國人民的個人資料不被濫用,故在該二法案的明文要求下,歐巴馬政府於推行Obamacare之際,相關資訊安全保全系統機制仍須符合標準始得合法運作。Obamacare上路在即,歐巴馬政府與相關部會該如何解決個人資料保護問題,其後續發展實值得觀察。

日本發布Startup交易習慣之現況調查報告最終版,統整新創事業實務上遭遇不公平競爭行為之態樣

  日本公平交易委員會於2020年11月27日發布「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),主旨為揭露其國內新創事業於交易市場遭遇不公平競爭行為的調查結果。本報告的作成目的,係基於新創事業發展具備推動創新、活絡國內經濟之潛力,故針對各類型新創事業在參與市場交易時,有無因其與相對人間的不對等地位(因需仰賴相對人提供資金或資源),遭遇不公平競爭的情況進行調查。同時,本報告所公布的調查結果,將會作為未來訂定新創事業與合作廠商間契約指引的參考依據,以圖從制度面改善新創事業參與市場的競爭環境。   本報告書所調查的交易態樣,聚焦於容易出現不公平競爭行為的契約或競爭關係,並分別整理主要的行為態樣如下:(1)新創事業與合作廠商間之契約:要求新創事業揭露營業秘密、約定對合作廠商有利的保密協議條款、無償進行概念驗證(Proof of Concept)、無償提供授權、於共同研究契約中約定智財權僅歸屬合作廠商、延遲給付報酬予新創事業等;(2)新創事業與出資者間之契約:要求新創事業揭露營業秘密、負擔出資者外包業務予第三人之費用、購買不必要的商品或服務、提供片面優惠待遇、限制新創事業的交易對象等;(3)新創事業與其他競爭廠商間之關係:競爭廠商要求交易相對人不得向與其存在競爭關係之新創事業買入競爭性商品;競爭廠商針對特定新創事業設定較高的商品售價,而事實上拒絕與其進行交易等。同時,依據報告書,在與合作廠商或出資者進行交易、或訂定契約的過程中,約有17%的新創事業表示曾遭遇「無法接受的行為」(納得できない行為),且當中有約八成的新創事業妥協接受。其中,若為銷售額未滿5000萬日圓、且公司未配有法務人員的新創事業,遇到無法接受行為的事業家數為銷售額5000萬日圓以上、且公司有法務人員之新創事業的2.5倍。

TOP