何謂日本「促進整合產官學共同研究的大學概況調查書」?

  「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。

  該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。

本文為「經濟部產業技術司科技專案成果」

※ 何謂日本「促進整合產官學共同研究的大學概況調查書」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8090&no=67&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
猴子自拍照著作權爭議;美國法院:動物無法擁有著作權

  2015年1月6日,美國聯邦地區法官裁定,猴子用照相機自拍,猴子無法取得自拍照的著作權。   英國攝影師Slater在四年前,讓黑冠猴Naruto使用其相機,成功的拍出了罕見的黑冠猴自拍照;而攝影師Slater後來把這些自拍照收錄在出版書中,並同時在網路上公開,並獲得廣大迴響。但之後維基百科(Wikipedia)收進免費圖片資源中,供大眾免費下載使用,Slater認為則認為這些照片的著作權已經被英國官方認可屬於Slater所開設的公司,此認可應適用於全世界。惟美國著作權局在2014年最新政策中,認為著作權登記僅適用「人類作品」,據此Naruto之自拍照並不受著作權保障。   而善待動物組織PETA(People for the Ethical Treatment of Animals)組織也加入了著作權爭奪戰局,其認為由Naruto所拍攝自拍照,其著作權應屬於Naruto,但由於Naruto不懂如何行使權利,故由PETA代為管理著作權,相關收益均會用於保護黑冠猴,並且向舊金山聯邦法院提出告訴。美國聯邦法院則在2016年1月6日判決,目前著作權法仍未將保護範圍擴張至動物作品上,故Naruto並未擁有該自拍照著作權,自無PETA代掌著作權可能;PETA接獲判決後表示會提出上訴。

優質網路社會基本法之推動芻議

菲律賓基因改造茄子被迫停止田間試驗

  菲律賓為亞洲國家間第一個將基因改造作物(基改玉米)商業化並用於食品和動物飼料者,而另一項正等待商品化的基改作物,基因改造茄子,原預計於今(2011)年底完成7項試驗並於明年達成商品化的目標,卻因未符合地方政府法規所要求的公眾諮詢程序而被迫暫時中斷其中2項實驗。   2010年12月,菲律賓Davo市市長因申請本案田間試驗之UP Mindano公司未遵守應於市政府內張貼公開資訊之法定義務,以違反基因改造作物環境釋放之法規為由,向該公司發出禁止令並銷毀植株,其田間試驗因此延誤了6個月以上。無獨有偶的,作為菲律賓基改作物主管機關的植物產業局,也以同樣的理由中止另一項在Visayes國立大學所進行的基因改造作物田間試驗。   Davo市農業辦公室Leonardo Avila III主任表示,就該公司就試驗田所設立的藩籬實際狀況來看,雙方對於嚴格密閉的田間試驗(strictly confined field trial)有理解上的落差。面對UP Mindano公司於期間未盡公開資訊義務以進行充份溝通的指控,該公司負責田間試驗的科學家Rasco表示,所有爭議皆已透過直接或間接的方式於報紙和公開論壇中予以釐清。甚至嘗試著透過說明會教育大眾關於基因改造茄子的風險和優點,更強調茄子沒有異花授粉植物所會造成的基因汙染問題。   從法規面觀察,此一事件所透露的問題在於,即便一國中央法規允許基因改造作物之環境釋出,地方政府亦有可能藉由地方法規來落實其限制或阻擋基因改造作物之政策或目的,因而中央和地方間之政策歧異也將會成為GMO推展時必須面對的法制議題。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP