沙盒(Sandbox)是一個讓小孩可以安全遊玩與發揮創意的場所,在電腦科學領域,沙盒則是用來代稱一個封閉而安全的軟體測試環境。而監理沙盒(Regulatory Sandbox),則是在數位經濟時代,為因應各種新興科技與新商業模式的出現,解決現行法規與新興科技的落差,故透過設計一個風險可控管的實驗場域,提供給各種新興科技的新創業者測試其產品、服務以及商業模式的環境。
在監理沙盒當中,業者將暫時享有法規與相關責任的豁免,減低法規遵循風險,以使業者能夠盡可能地測試其技術、服務或商業模式。透過在測試過程中與監管者(通常為政府主管機關)的密切互動合作,針對在測試過程中所發現或產生的技術、監管或法規問題,一同找出可行的解決方案,並作為未來主管機關與立法者,修改或制定新興科技監管法規的方向跟參考。
監理沙盒一詞源自英國在2014年因應Fintech浪潮所推動的金融科技創新計畫,而類似的概念也出現在日本2014年修正產業競爭力強化法當中的灰色地帶消除制度與企業實證特例制度。我國則於2017年通過金融科技發展與創新實驗條例,為我國監理沙盒的首例,2018年我國持續推動世界首創的無人載具科技創新實驗條例立法,為我國建構更有利於產業創新的法制環境。
本文為「經濟部產業技術司科技專案成果」
澳洲於2018年2月22日施行個人資料洩漏計畫(Notifiable Data Breaches scheme, NDB scheme),該計畫源於澳洲早在1988年所定「澳洲隱私原則」(Australian Privacy Principles, APPs)之規定。對象包括部分政府機構、年營業額超過300萬澳幣之企業以及私營醫療機構。 根據該計畫,受APPs約束的機構於發生個資洩露事件時,必須通知當事人以及可能會造成的相關損害,另外也必須通知澳洲私隱辦公室(Office of the Australian Information Commissioner, OAIC)相關資訊。 NBD計畫主要內容如下: 一 、規範對象: 包括澳洲政府機構,年營業額超過300萬澳幣企業和非營利組織、私營醫療機構、信用報告機構、信貸提供者、稅號(TFN)受領人。 若數機構共享個人資料,則該告知義務由各機構自行分配責任。 關於跨境傳輸,根據APPs原則,於澳洲境外之機構必須以契約明定受澳洲隱私法規範,原則上若因境外機構有洩漏之虞,澳洲機構也必須負起責任。 二 、個資洩露之認定: 未經授權進入或擅自公開該機構擁有的個人資訊或個人資料滅失。 可能會對一個或多個人造成嚴重傷害(如身分竊盜、導致個人嚴重經濟損失、就業機會喪失、名譽受損等等)。 個資外洩機構無法通過補救措施防止嚴重損害的風險。 三 、OAIC所扮演之角色: 接受個資外洩之通報。 處理投訴、進行調查並針對違規事件採取其他監管行動。 向業者提供諮詢和指導。 四 、於下列情形可免通知義務: 為維護國家安全或增進公共利益所必要。 與其他法案規定相牴觸者。 五 、通知內容: 洩露資料的種類及狀況。 發生個資外洩事件機構之名稱以及聯繫窗口。 個資當事人應採取之後續行動,避免再度造成損害。 惟NBD 計畫對於個人資料的安全性沒有新的要求,主要是對APPs的補充,針對持有個人資料的機構採取合理措施,保護個人資料免遭濫用、干擾或損失, OAIC目前也正在規劃一系列有關個資洩漏事件指導方針及導入說明手冊。
日本ZEON股份有限公司宣布加入「對抗COVID-19智財宣言」日本ZEON公司於2020年10月19日發表加入「以智慧財產協助控制新冠病毒傳染對策宣言(對抗COVID-19智財宣言,OPEN COVID-19 DECLARATION)」,以達到共同抗疫之目的。 該宣言是由ジェノコンシェルジュ京都株式会社(GENO CONCIERGE KYOTO)所發起,期望透過加入該宣言的企業,於以終結新冠肺炎蔓延為目的所為之產品開發、製造及販賣,宣示不行使企業所擁有相關發明、新型及設計專利權和著作權等權利。如此一來,將可建構友善的防疫產品開發及製造環境,讓開發者或製造商免去來自權利人的侵權調查或繁複的授權流程。 目前已有包括Canon、Nikon、SONY、CASIO、Panasonic、大金空調、豐田、三菱、速霸路、馬自達等101間知名企業加入,並擁有高達927,897件的專利數量。 經產省近畿經濟產業局也與該宣言辦公室合作,提出對抗新冠肺炎計畫,計畫主軸在於以下三點: 從加入宣言的所有專利中,挑選易於活用的技術並提出施行的可行方案。 協助中小及新創企業與加入宣言的企業對談,支援權利交涉。 協助擬定授權契約及業務展開等必要策略。 我國在經濟部智慧財產局全球專利檢索系統(GPSS)全新提供「防疫專區」服務,以目前防疫需求較大的產業如「口罩」、「防護衣」、「檢測」、「疫苗」、「藥品」等14項作為分類主軸,提供「一鍵查詢全球防疫技術相關專利」及「防疫技術相關專利新訊訂閱」功能,協助產業界快速掌握全球防疫技術相關專利。
英國運輸部向議會提交《2023年公共充電樁規則》草案,規範充電樁規格標準英國運輸部(Department for Transport)2023年7月11日向議會提交《2023年公共充電樁規則(Public Charge Point Regulations 2023)》草案,希望改善電動車駕駛的充電體驗。草案是根據《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》授權,規定一系列充電樁營運商必須遵守的充電樁規格標準,充電樁營運商若未遵守相關規定,最高可處以每座充電樁1萬英鎊之罰鍰: 一、定價及費用透明:充電樁營運商必須清楚標示每時段定價,以便士/瓩時(p/kWh)作為計價單位。每次充電後必須顯示充電總費用。 二、須提供24小時免費客服專線:充電點營運商須提供免費24小時專線,支援客戶服務。同時將客戶所提出的問題、解決方式和時間做成紀錄。 三、開放資料:充電樁營運商必須遵守開放式充電協議(Open Charging Point Interface, OCPI),建構開放式充電網絡,消除漫遊服務資料存取的障礙,免費公開充電樁位置、充電狀態、功率等充電樁相關資料。 四、感應式支付:所有新的8瓩以上公共充電樁,及現有快速公共充電樁必須提供消費者零接觸、無現金支付選項。 五、99%可靠性:所有快速公共充電樁,可靠性要求必須高達99%(即99% 的時間可以正常使用),並在網站公開充電樁可靠性資料。 六、充電漫遊支付服務(Payment roaming):充電樁營運商必須至少和一家第三方充電漫遊服務供應商(roaming provider)進行合作,使消費者可以透過漫遊服務,使用同一APP或具RFID感應功能的卡片,支付不同充電樁營運商的充電費用。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)