英國數位、文化、媒體暨體育部於2018年3月8日公布「安全設計(Secure by Design)」報告,此報告目的在於使IoT設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。
此報告中包含了一份經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論後,提出之可供製造商遵循之行為準則(Code of Practice)草案。
此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。
其中提出了13項行為準則:1. 不應設定預設密碼(default password);2. 應實施漏洞揭露政策;3. 持續更新軟體;4. 確保機密與具有安全敏感性的資訊受到保護;5. 確保通訊之安全;6. 最小化可能受到攻擊的區域;7. 確保軟體的可信性;8. 確保個資受到妥善保障;9. 確保系統對於停電事故具有可回復性;10. 監督自動傳輸之數據;11. 使用戶以簡易的方式刪除個人資訊;12. 使設備可被容易的安裝與維護;13. 應驗證輸入之數據。
此草案將接受公眾意見,並於未來進一步檢視是否應立相關法律。
本文為「經濟部產業技術司科技專案成果」
加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。 第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。 參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。 此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。
日本國土交通省航空局公布日本無人機飛行安全指引日本國土交通省航空局於2017年9月12日公布修正版日本無人機飛行安全指引(「無人航空機(ドローン、ラジコン機等)の安全な飛行のためのガイドライン」を改定しました),乃依據修正之航空法規定(平成27年法律第67號)制訂無人機飛行之相關基本規則。 定義所謂無人機乃指非人搭乘,透過遠距遙控或自動駕駛而飛行之飛機、旋翼飛機、滑翔機及飛艇。而無人機禁止飛行在150公尺以上高空,不得在航空站周邊空域(包含進入),以禁止在人口集中地區之上空(150公尺以下)。 除經國土交通省同意之例外規則外,無人機之飛行必須在日出後日沒前,且需在直接肉眼目視範圍內之監視下,與第三人或他人建築物、車輛等物體應距離30公尺以上,並不得在祭拜或假日等人群聚集之場所上空飛行,也不得輸送爆裂物等危險物品,亦不得從無人機上投擲物品。另外應注意事項,例如飛行場所除了航空站周邊外,直升機等降落可能之場所、迫降場所、高速公路或高速鐵路等、鐵路周邊或車道周邊等、高壓電線、變電所、電波塔及無線電設施等附近應注意飛行安全。 於飛行之際,不得飲酒等造成不當操作,飛行前應注意天氣狀況、飛機無損害或故障、電池燃料充足等,並確保周邊無障礙物,並應迴避與飛機或無人飛機之衝突。平時應保持無人機之狀況良好,且維持日常操作良好技能,並鼓勵投保人身或財產保險。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。 大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。 法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。 大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。 本文同步刊登於TIPS網站(https://www.tips.org.tw)