德國公佈聯邦政府人工智慧戰略要點

  德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。

  德國人工智慧戰略要點摘要如下:

1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。
2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。
3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。
4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。
5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。
6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。
7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。

  整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。

相關連結
你可能會想參加
※ 德國公佈聯邦政府人工智慧戰略要點, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8104&no=64&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
英國氣候過渡計畫小組公布氣候揭露報告框架的最終版本

英國氣候過渡計畫工作小組(Transition Plan Taskforce,以下稱TPT)於2023年10月9日公布其氣候揭露報告框架(TPT Disclosure Framework,下稱「框架」)最終版本及使用指引。TPT是英國財政部在2022年4月成立,負責建立氣候過渡計畫準則。TPT則於2022年11月提出框架草案,並開始徵詢產官學界意見,最後提出正式版本。 TPT框架建議企業以宏觀、有策略的方式制定氣候過渡計畫。TPT框架從企圖心、行動力和當責性三項原則出發,分別就五個必須揭露的事項說明如何在氣候揭露報告中呈現企業的氣候過渡計畫: 一、企圖心:說明企業的基礎事項,例如氣候戰略目標和商業模式。 二、行動力:說明過渡計畫的執行策略、以及擴大參與的策略。 三、當責性:說明將採用哪些指標與標的來監督計畫的執行、以及如何將過渡計畫融入企業的治理當中。 TPT也配合框架內容制定行業指引,目前已公布40個行業摘要(Sector Summary),簡述各行業可用的脫碳手段、指標與目標。未來還將公布針對銀行業、資產擁有者、資產管理者、電力公用事業和電力發電機、食品與飲料、金屬與礦業、石油和天然氣等7個行業的深度剖析(Sector Deep Dives)。 此外,TPT網站上也提供TPT框架與相關國際主流框架或準則之比較報告給各界參考,要使這套由英國自行開發、為英國內部量身打造的框架也能接軌國際,其未來實施成效值得繼續追踪觀察。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國監管醫療用基因檢驗之法制與實務趨勢

美國監管醫療用基因檢驗之法制與實務趨勢 資訊工業策進會科技法律研究所 2020年03月25日 壹、事件摘要   精準醫療多搭配基因檢驗技術的研發與應用,以幫助醫師針對個體提供精確的診斷及治療服務。以美國現況而言,許多新的醫學檢驗技術在各實驗室中研發,且迅速發展至臨床應用,但必須經過醫療器材上市許可後,始得於實驗室外運用。   美國國會於1976年修正《聯邦食品藥物與化妝法(Federal Food, Drug, and Cosmetic Act)》後,將「體外診斷醫療器材」納入醫療器材的規範,同年美國食品藥物管理署(Food and Drug Administration, FDA)便宣佈對實驗室自行研發之檢驗技術(Laboratory Developed Tests, LDTs)行使「自由裁量權」(Enforcement Discretion),排除於《聯邦食品藥物與化妝法》的管理之外,讓實驗室內LDTs的應用可享較為寬鬆的空間[1] 。   換句話說,由於典型之LDTs僅為實驗室內部使用,且測試方式簡易,需求量亦不高,可由「醫療保險與醫療補助服務中心」(The Center for Medicare & Medicaid service, CMS)依據《臨床實驗室改進修正案(Clinical Laboratory Improvement Amendments, CLIA)[2]》之規範,施行臨床實驗室的品質管理。臨床實驗室於通過CLIA認證後,即可將開發的LDTs進行臨床應用。   然而,1976年迄今,LDTs的發展已經有許多的變化,運作LDTs的實驗室往往獨立於醫療服務機構(Healthcare Delivery Entity)之外,而依賴於許多高科技的儀器、軟體來產生結果及解釋,增加了許多以往沒有的風險;其商業模式也已經大幅的改變,已經大量製造、用於直接的臨床診斷決策上[3]。因此,美國FDA認為有必要引進一個全面性的監管架構管理LDTs,而非像過去一樣,將其排除於《聯邦食品藥物與化妝法》的管理之外。 貳、重點說明   FDA近年來加強基因檢驗風險監管之具體行動,包括LDTs監管架構之研擬以及加強實務取締,以保障病人的權益。 一、LDTs監管架構指引草案   美國FDA曾於2014年公布兩項指導文件,分別為「實驗室自行研發檢驗方法監管架構指引草案[4]」以及「實驗室自行研發檢驗技術須執行通知上市與不良事件通報之草案[5]」(以下統稱LDTs監管架構指引草案)。LDTs監管架構指引草案希望提升LDTs的規管密度,並規劃將LDTs分為數個不同的類別,依據其風險程度的高低,分別要求其進行包含取得上市前許可、符合品質系統規範等不同程度之要求。   該指引草案公布後,受到各臨床實驗室、醫療單位、病人與傳統體外診斷試劑製造商、政府部門等熱烈討論。特別是業界擔憂監管密度的提高,會扼殺臨床實驗室的創新意願,使得實驗檢驗技術、方法與應用停滯,並耗費大量的人力與金錢成本。   美國FDA最後於2017年1月13日說明,短期內不會執行該指引草案內容,但會尋求更加全面的立法解決方案[6]。歸納各界對指引草案之看法,顯示對LDTs的額外監督是必要的,但對於如何監管則有不同看法,未來主管機關應基於下列原則,提出符合科學證據、經濟效益並兼顧臨床安全性之管理方案,重點摘述如下: (一)以風險等級為基礎,並分階段實施監督   之後的四年內將分階段要求LDTs逐步進行上市前審查,第一年實驗室必須回報LDTs所有的嚴重不良反應;第二年將要求與第三級高風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的上市前審查;第三年要求與第二級中風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的510(k)上市前通知;第四年則完成LDTs全面性的監督,並且原則上與醫療器材採取一致標準。 (二)以檢驗之分析效能與臨床有效性,作為核准基礎   目前CMS已有實驗室檢驗之臨床效用(clinical utility)審查,但與FDA上市前審查所需之分析效能與臨床有效性有所差異。是故,FDA將制定適合的審查標準,以減輕實驗室提交審查的負擔,並加速上市前審查的審核時間。 (三)不良反應通報系統   將參考既有醫療器材上市後監督機制(postmarket surveillance),監控LDTs在真實世界的效能及臨床結果(real-world performance and clinical outcomes)。 (四)健全實驗室之品質系統   FDA將會密切與CMS合作加強實驗室的品質系統要求,但會與既有CLIA等認證制度相互調和、不會重複監督。 (五)公開檢驗性能資訊供大眾取得   實驗室必須將LDTs檢驗的分析效度及臨床有效性等相關資訊,公開讓民眾可取得。 (六)免除特定類型檢驗之上市前審查   對於特定類型的LDTs可免除上市前審查、品質系統及註冊登記之義務,如:對健康影響較低者、罕見疾病使用之LDTs等。 二、加強基因檢驗之執法 (一)23 and Me遺傳健康風險個人基因體服務   雖然在LDTs規範上,美國FDA暫時未有全盤性的改變;但在個案上,開始有逐步的調整。美國FDA在2013年11月時,發函警告生技公司「23 and Me」,認為其銷售的「個人基因體服務」(personal genome service, PGS)應該屬於《聯邦食品藥物與化妝法》所規定的第三級醫療器材(風險程度最高的醫療器材),但由於其未取得美國FDA的上市前許可,因此應該立刻停售;其後,23 and Me將其旗下的「遺傳健康風險個人基因體服務」(PGS Genetic Health Risk)向美國FDA申請並取得第二級醫療器材許可[7]。 (二)Inova藥物反應基因檢驗   2019年另外一起案例,亦顯示美國FDA從嚴限制LDTs在實驗室外應用之決心。美國FDA於2019年4月4日向Inova基因體實驗室(Inova Genomics Laboratory)寄發通知函,表示其自行研發之MediMap Plus基因檢驗產品,用於預測病人對藥品的反應與接收度,必須先完成FDA上市前審查程序,始得進行商業販售[8]。   Inova基因體實驗室雖回覆表示,MediMap Plus基因檢驗產品屬於LDTs的範疇,所以不應該受到FDA上市前審查或任何標示要求之拘束。嗣後,FDA則直接寄發警告函,申明其並未針對LDTs創設任何責任免除條款,且為了促進公眾安全,FDA對於LDTs保留裁量權[9]。對於FDA的警告,Inova決定停止執行MediMap Plus之販售,也不會申請上市前審查[10]。 三、小結   由於基因檢驗之安全及確效涉及面向十分廣泛,美國監管體系主要係以《聯邦食品藥物與化妝法》之醫療器材規範,搭配行之多年的CLIA實驗室品質管理制度,以完備各環節之風險管理。申言之,即便基因檢驗技術僅屬實驗室內應用,並未在外流通,亦屬實驗室品質管理之範疇,必須依據CLIA實驗室分類進行能力測試或實地查核。   其次,美國對於LDTs的監管雖然認為不宜貿然與醫療器材規範一致,但未來仍將參考醫療器材的風險等級基礎,並盡量提高審查的效率,此趨勢與歐盟新的醫療器材法規[11]一致。 參、事件評析   我國近年來政府與民間在基因檢驗的監管上亦有所討論,特別是LDTs之管理方向、管制密度之取捨、實驗室品質標準等[12]。從美國醫療用基因檢驗監管趨勢觀之,建議我國未來或可釐清不同目的之基因檢驗,如商業用、實驗用、醫療用等,進而明確醫療用基因檢驗之監管密度,並依不同風險程度採取分級監理,以在新技術應用與病人權益保護之間取得平衡。 [1]Center for Devices and Radiological Health, Food and Drug Administration, Draft Guidance for Industry, Food and Drug Administration Staff, and Clinical Laboratories: Framework for Regulatory Oversight of Laboratory Developed Tests (LDTs), Oct. 03, 2014, https://www.fda.gov/media/89841/download (last visited Jan. 07, 2020), at 6-7. [2]42 USC 263a, available at https://www.govinfo.gov/content/pkg/USCODE-2011-title42/pdf/USCODE-2011-title42-chap6A-subchapII-partF-subpart2-sec263a.pdf (last visited Dec. 26, 2019). [3]呂雅情,〈實驗室自行研發檢驗技術(LDTs)的發展與法規管理現況〉,當代醫藥法規月刊,2018/02/09,https://www.cde.org.tw/Content/Files/Knowledge/cc18e890-c1e3-4e6e-8bbd-45d7afd6cee9.pdf(最後瀏覽日:2020/01/07),頁17。 [4]Supra note 1, at 7-8. [5]id. at 30. [6]Food and Drug Administration, Discussion Paper on Laboratory Developed Tests (LDTs), Jan. 13, 2017, https://www.fda.gov/media/102367/download (last visited Jan. 07, 2020), at 1. [7]何建志,〈精準醫學趨勢下基因檢驗與消費者保護法律問題〉,《月旦醫事法報告》,第25期,頁44-45(2018)。 [8]Food and Drug Administration, Inova Genomics Laboratory, Apr. 04, 2019, https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/inova-genomics-laboratory-577422-04042019 (last visited Dec. 19, 2019). [9]Food and Drug Administration, Laboratory Developed Tests, Sep. 27, 2018, https://www.fda.gov/medical-devices/vitro-diagnostics/laboratory-developed-tests?fbclid=IwAR3gOzax6O0eUx67IpZBNpmvPrW6ynuP0P99Dlt4AGKZtxvwGSoYOx5EmFA (last visited Dec. 19, 2019). [10]GenomeWeb, Inova Decides to End PGx Test Offerings in Response to FDA Warning Letter, Apr. 15, 2019, https://www.genomeweb.com/regulatory-news/inova-decides-end-pgx-test-offerings-response-fda-warning-letter#.XNkp0hQzbIU (last visited Dec. 19, 2019). [11]歐盟2017年5月25正式生效新版醫療器材法規(Medical Devices Regulations, MDR; Regulation (EU) 2017/745)以及體外診斷醫療器材法規(In Vitro Diagnostic Devices Regulations, IVDR;Regulation (EU) 2017/746)。 [12]蔡雅雯、林工凱、黃品欽、謝文祥,〈基因檢驗法規監管方向初探〉,《台灣醫界》,第62卷第12期,2019/12,https://www.tma.tw/ltk/108621207.pdf(最後瀏覽日:2020/02/06)。

德國車輛及其系統新技術研發計畫

  德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。   在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。   在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。   本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。

TOP