本文為「經濟部產業技術司科技專案成果」
韓國2013年智財施行計畫檢討評估作法介紹 科技法律研究所 法律研究員 陳聖薇 2014年12月23日 壹、事件摘要 依據韓國智慧財產基本法第10條,韓國針對國家智慧財產施行計畫之執行成果,應定期進行整體檢討評估,以作為往後計畫之參考指標。為此,韓國於2014年8月11日公布「2013年度國家智財施行計畫之檢討評估結果」[1](以下簡稱2013檢討評估結果)。本文以下將簡要說明之。 如同「2012年度國家智財施行計畫之檢討評估結果」(以下簡稱:2012檢討評估結果),2013檢討評估結果針對2013年度國家智財施行計畫(以下簡稱2013年施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,以及地方自治團體等六個面向挑選出重點推動之35課題,由民間專家組成「政策評估團」,以確保評估之專業性及客觀性。而具體評估方式與指標以下分別說明之。 貳、評估方式與指標 一、評估方式 韓國考量到智財施行計畫之特殊性,再者,評估國家層級智財政策之成效,不僅需要評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,以作為下一年度計畫政策之參考。 為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。最後,本智財施行計畫之最終評估結果會告知相關機關,供其制定、執行政策之參考,並且運用於智慧財產財政分配方向及下年度施行計畫之制定上。 二、評估指標 在評估指標設計上,韓國一大特色在於其不以行政機關別為政策評估,而是以創造、保護、運用、基礎環境、新智慧財產等五大政策領域以及加上地方自治團體面向作為評估框架[2]。進一步之細部評估指標則運用國務總理室之政府業務評估(特定評估[3])基本架構,針對「政策形成–執行–成果」整個過程,分階段進行評估。此外,2013檢討評估結果是以2012檢討評估結果為基礎,將既有之指標統合、刪減後,再依據地方政策特殊性,增加地方自治團體之評估指標。指標變更事項有:依據各地方特殊性需要有針對地方量身訂作之「地方自治團體政策差別性」指標;針對識別性較弱之「推動日程之適當性」與「監督與情況變化之對應性」之指標整合。配分變更事項有:因應政策是否實際有感於民的比重日亦加重,「政策效果」之指標也加重配分;就新的指標針對中央與地方分別進行評估。詳細指標內容如下表所示 : 表1:2013年智財施行計畫之中央(地方)機關政策評估指標 區分 評估項目 評估基準 政策形成(30%/35%) 1.計畫確立之適切性(15%) 1-1.事前分析、意見蒐集之充實性(5%) 1-2.成果指標及目標值之適當性(10%) 2.政策基礎環境之確保水準(15%/20%) 2-1.推動體系之充實性(5%/10%) 2-2.資源分配之適當性(10%) 政策執行(30%) 3.推動過程之效率性(20%) 3-1. 與有關機關、政策之連結性(10%) 3-2.監督與情況變化之對應性(10%) 4.政策擴散之努力水準(10%) 4-1.政策溝通、宣傳、教育之充實性(10%) 政策成果(40%/35%) 5.政策成果及效果(40%/35%) 5-1.成果目標達成度(20%/15%) 5-2.政策效果(20%) 資料來源:韓國國家智財委員會,http://www.ipkorea.go.kr/index.do。 參、代結論 在前述評估機制運作下,2013檢討評估結果共列出8個優秀課題與4個待改善之課題。後續針對待改進課題,該主管機關在接受評估委員之改善意見後,會提出補充之改善計畫,表示其要如何解決政策推動之障礙因素,而國家智財委員會則會隨時檢視其執行狀況,並且適時給予政策支援。至於優秀課題部分,韓國將會提供細節資訊與相關機關共享,讓機關之間互相學習,樹立一個學習標準(benchmarking)。 從施行計畫、檢討評估到提供量身訂做之改善建議,顯示韓國對於建構智慧財產強國的企圖。而2012、2013檢討評估結果之經驗,也將持續提供為2014年檢討評估之參考,使智慧財產施行計畫之檢討評估能更具效率。 [1]韓國國家智慧財產委員會,2014年8月11日公布之第11回國家智財委員會決議〈13년 시행계획 점검평가결과〉。 [2]依據政策領域評估的課題計有 :創造(2)、保護(4)、活用(5)、基礎(3)、新智慧財產(4)以及地方自治課題(17)。 [3]韓國政府業務評估基本法第2條第4款,所謂特定評估,指國務總理以中央行政機關為對象,為統合管理國政,對必要之政策進行評估。
BS 10012:2017個人資訊管理系統新版標準已發布BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。 2017新版架構由原本的6章變為為10章,新架構如下: 第1章 範圍 第2章 引用規範 第3章 專有名詞與定義 第4章 組織背景 第5章 領導統御 第6章 規劃 第7章 支援 第8章 營運 第9章 績效指標 第10章 改善 新標準主要修改內容如下: 個資盤點單需增加「法規」盤點項目,且應載明個資流向(軌跡紀錄)。 風險管理架構參酌ISO 31000:2009修改。 組織增設資料保護官(Data Protection Officer, DPO)。 個資蒐集、處理及利用: (1)蒐集前須先告知當事人並取得其同意。 (2)蒐集應有必要性且最小化。 (3)兒童個資蒐集、利用須先經監護人同意。 (4)若個資利用目的為開放資料(Open data)須作去識別化。 個資必須維持正確且最新。 個資保存不超過處理目的存在必要之期限(保存期限)。 增加個資完整性與機密性要求。 預先諮詢與授權,例如:網頁有使用cookies需明確告知瀏覽者。 個資管理目標與量測,包括欲導入範圍、現況評估等有效性目標。 增添文件管理規範。 BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
FCC指定九家業者負責管理閒置頻譜資料庫美國聯邦通訊委員會(Federal Communications Commission,FCC)於2008年11月公布法規命令,開放閒置無線頻譜之使用。閒置頻譜緣起於美國無線電視訊號,對於鄉村或偏遠人口較少之地區並無覆蓋,這些地區之無線電視頻譜處於閒置未用狀態。FCC因應無線通訊對頻譜之需求,在以拍賣釋出新頻譜的同時,也由增進既有頻譜的效率著手。 FCC於此法規命令中公布初步的技術規範,包含使用地理資料庫以及感知無線電技術作為利用閒置頻譜之要件。之後,FCC於2009年11月公告接受業者遞交計畫書,審查是否能成為資料庫管理者之資格。 2010年9月FCC再度公布新的法規命令,取消感知無線電技術作為必要條件之要求,並調整技術規範,也預告將選擇民間業者來進行地理資料庫之管理與建置。 2011年01月26日,FCC正式公告九家業者,包括Comsearch、 Frequency Finder、Google、KB Enterprises LLC and LS Telcom、 Key Bridge Global LLC、 Neustar、Spectrum Bridge、 Telcordia Technologies、 WSdb LLC.。這九家業者將必須針對2010年所發佈之新規則提出補充資料,並與FCC工程技術辦公室(Office of Engineering and Technology ,OET)配合,舉行一系列的研討與測試實驗,確立最後的技術標準與測試資料庫運作的穩定度。 FCC亦表示,資料庫管理者必須同意,他們將不會從事任何歧視性及反競爭行為,亦不可有危及用戶隱私之行為。 在FCC指定地理資料庫的管理者後,美國開放閒置頻譜使用的前置準備也可說是完成,未來等業者完成測試,相關利用頻譜的設備上市之後,可望為無線通訊市場帶來更多低成本的選擇。