英國衛生部發布基因檢測與保險自律行為準則

  英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。

  準則中列出八項承諾,此八項承諾為ABI代表其成員議定:

  1. 承諾一:保險業者(Insurers)會公平對待要保人(applicants)。保險業者不會要求或迫使任何要保人進行預測性或診斷性基因檢測;若要保人已進行預測性基因檢測,保險業者亦不會對其作出差別待遇,除非有如下之情況。
  2. 承諾二:列入附錄一之疾病類型並超過以下金額之保單,保險業者始得要求要保人提供預測性基因檢測之結果:
    1. 人壽保險-500,000英鎊 /人。
    2. 重大疾病險-300,000英鎊 /人。
    3. 收入保障險-30,000英鎊 /年。

    目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。

  3. 承諾三:保險業者不會要求要保人提供: 
    1. 要保人或被保險人於承保期間所進行之預測性基因檢測結果。
    2. 非為要保人或被保險人本人(如要保人或被保險人血親)之預測性基因檢測結果。
    3. 於科學研究背景下獲得之要保人或被保險人預測性基因檢測結果。
  4. 承諾四:若保險業者基於承諾二之規定要求要保人提供預測性基因檢測結果,亦不會針對該結果制定過於苛刻(disproportionate)的條款或條件。
  5. 承諾五:保險業者須於要保人簽約前提供明確之訊息,以說明:     
    1. 根據本準則,要保人在何種情況下必須或無須提供相關預測性基因檢測結果。
    2. 若要保人自願提供對其有利的預測性基因檢測結果,保險決策將如何被影響。
  6. 承諾六:若要保人基於意外或自願向保險業者提供預測性基因檢測結果,保險業者可考量要保人之利益調整保單內容;若檢測結果對要保人不利,除非符合承諾二之情形,否則保險業者將忽略該檢測結果。
  7. 承諾七:販售人壽保險、重大疾病或收入保障保險之保險業者將:     
    1. 每年向ABI報告其遵守本準則之情況。
    2. 根據本準則問答部分之詳細資訊,建立投訴程序(complaints procedure)。
    3. 每年向ABI報告與本準則運作上相關之投訴情形。
  8. 承諾八:販售人壽保險、重大疾病或收入保障保險之保險業者將指定至少一名經培訓之基因核保人(Nominate Genetics Underwriter, NGU),負責與遺傳資訊(genetic information)及遵守本準則相關之事項,且NGU之人數應與業務規模成比例。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 英國衛生部發布基因檢測與保險自律行為準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8140&no=64&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本數位廳發布資料治理指引,協助企業運用資料提升企業價值

日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。

我國電子公文法制的最新發展

Tiffany訴訟追加主張eBay所侵害商標數量以擴大賠償金之請求

  美國紐約最大的珠寶公司Tiffany 於二○○四年向美國聯邦南紐約地方法院對全世界最大的拍賣網站eBay所提的商標侵權訴訟乙案,在該年度造成電子商務業界的一陣風暴。Tiffany 在起訴狀當中主張, eBay網站中所賣方所拍賣Tiffany的珠寶百分之七十三為仿冒品。雖然,Tiffany發函請求eBay移除刊登在eBay網站上,約一萬九千筆拍賣Tiffany仿冒品的網頁;但Tiffany仍提起訴訟主張eBay未對仿冒詐欺之情形盡監督之責,而造成該公司之營業損失,故須負起共同侵權責任。其它世界知名的精品公司,如 Louis Vuitton Moet Hennessy及Dior Couture也於二○○六年對eBay未盡監督之責而侵害其商標乙事在巴黎地方法院提起訴訟,並要求eBay賠償該兩大精品業者二○○一年至二○○五年之營業損失。   Tiffany的代表律師針對eBay所提起的答辯在六月一日提出補充意見狀表示,原起訴狀所主張的商標權範圍並未限定或引用特定的商標,因此eBay的主張無理由。   Tiffany v. eBay乙案,原定於今年 (二○○七年) 五月十四日在南紐約地方法院進行法官審判程序 (Bench Trail) ,但因五月八日承審法官下令進行訴訟和解程序而延期。今年四月中旬,Tiffany追加訴訟主張eBay侵害其所有的十一個包括Tiffany經典藍色的顏色、PALOMA PICASSO等商標。eBay對上開Tiffany的追加訴訟提出反對意見,主張Tiffany所追加主張eBay侵權的十一個商標未按正當程序提出,將會使得eBay因提出證據的時間不足而造成裁判偏頗之虞,故請求承審法官駁回Tiffany的追加訴訟。   按Tiffany追加eBay所侵害商標數目之目的,係為增加eBay的法定損害賠償義務;因為美國法律規定,商標侵權的法定損害賠償義務計算方式以所受侵害仿冒的商標商品或服務之種類為準,每一項美金一百萬元之賠償金。

TOP