英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。
準則中列出八項承諾,此八項承諾為ABI代表其成員議定:
目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。
本文為「經濟部產業技術司科技專案成果」
新加坡政府於2023年9月4日發布《無形資產揭露框架》(Intangibles Disclosure Framework, IDF),鼓勵企業以系統化的方式,主動對外揭露所持有之「無形資產」(如品牌價值、專利等),使利害關係人(如投資者、合作夥伴等)能進一步瞭解其「無形資產」現況,藉此創造「無形資產」更高的價值。本框架是在「新加坡智慧財產局」(Intellectual Property Office of Singapore, IPOS)及「會計與企業管理局」(Accounting and Corporate Regulatory Authority, ACRA)主導下,由產業代表組成的工作小組歷時2年討論後制定發布。 框架中指出,過去20年間,全球「無形資產」的投資和所創造之價值逐步超過「有形資產」。然而,傳統會計準則往往無法完全真實反映企業所持有之「無形資產」價值,亦即「無形資產」價值往往被低估。因此,本框架鼓勵企業主動揭露,並建議可將「無形資產」現況納入公司年報(Annual Report)中,亦可獨立成一份報告,與公司財報(financial statements)一同發布。 此外,企業在揭露「無形資產」時可依循以下四項原則(簡稱「SIMM原則」): 1.策略(Strategy): 企業應揭露「無形資產」與其商業經營策略的關聯性、佈局狀況、貢獻度,使利害關係人瞭解企業是如何利用「無形資產」維持其競爭優勢及替投資者創造更多的收益。 2.識別(Identification): 本框架指出「無形資產」不用侷限於傳統會計準則的定義,企業應揭露「無形資產」的性質和特徵(包含如何取得),並建議可將「無形資產」分類,如:(1)行銷類;(2)顧客類;(3)契約類;(4)藝術類;(5)技術類;(6)人力資源類。 3.衡量(Measurement): 企業應揭露其評估(assess)「無形資產」價值的績效指標與驅動因子,並以量化方式呈現。如針對商標等「行銷類」之「無形資產」,企業得以顧客滿意度、國際品牌排名作為評估之績效指標。企業亦可選擇揭露「無形資產」的貨幣價值(monetary value),其評價應依照國際評價準則(International Valuation Standards , IVS)進行。 4.管理(Management): 企業應揭露其如何識別、評估、管理與各類「無形資產」相關之風險與機會,以及如何將這些程序整合至企業整體風險管理策略中,以協助利害關係人瞭解企業「無形資產」所面臨之風險和機會。譬如企業應明確揭露監控相關風險之頻率、定期更新風險管理政策和程序等。 新加坡總理公署部長(Minister of Prime Minister's Office)Indranee Rajah表示,本框架是「新加坡智慧財產戰略」(Singapore IP Strategy 2030, SIPS 2030)的重要推動措施之一,企業若能主動揭露「無形資產」現況,將有助於將其「無形資產」商業化、吸引更多的投資、增進風險管理、提升企業競爭力,持續強化新加坡作為全球智財活動及交易樞紐的地位。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
布拉格提案(The Prague Proposals)2019年5月3日,來自全球30多國的政府官員與來自歐盟、北大西洋公約組織的代表於捷克布拉格所舉辦的5G資安會議(Prague 5G Security Conference)中,強調各國建構與管理5G基礎建設時應考慮國家安全、經濟與商業發展等因素,特別是供應鏈的安全性,例如易受第三國影響之供應商所帶來的潛在風險,本會議結論經主辦國捷克政府彙整為布拉格提案(The Prague Proposals),作為提供世界各國建構5G基礎建設之資安建議。 在這份文件中首先肯認通訊網路在數位化與全球化時代的重要性,而5G網路將是打造未來數位世界的重要基礎,5G資安將與國家安全、經濟安全或其他國家利益,甚至與全球穩定等議題高度相關;因此應理解5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,則為強調確保5G基礎建設的供應鏈安全。 因此在布拉格提案中強調各國建構通訊網路基礎建設,應採用國際資安標準評估其資安風險,特別是受第三國影響之供應商背後所潛藏之風險,並應重視5G技術變革例如邊緣運算所產生的新風險態樣;此外對於接受國家補貼之5G供應商,其補貼應符合公平競爭原則等。布拉格提案對於各國並無法律上拘束力,但甫提出即獲得美國的大力肯定與支持。
商標權人的好消息—歐盟法院判決巴黎萊雅(L’Oreal)勝訴歐盟法院(European Court of Justice; 簡稱ECJ)於2009年6月18日判決,確認法國化妝品公司- 巴黎萊雅(L’Oreal SA)之競爭廠商-Bellure NV(簡稱Bellure公司) 有侵害巴黎萊雅之商標權,此一判決對於刻意仿冒之廠商予以重擊,也更擴大著名商標權人的商標保護範圍。 Bellure公司所販售及製造的香水,係仿似巴黎萊雅所製造香水的味道、瓶身及包裝,且更以”smell-a-like”的商品價格比較表做為廣告宣傳,藉由「搭便車」的方式推銷Bellure之產品。 歐盟法院認為,縱使Bellure的廣告宣傳及產品本身,並未直接和巴黎萊雅的產品產生商標混淆誤認的可能,且並未對巴黎萊雅造成直接的損害,但Bellure如此「搭便車」行銷自己產品的方式,確實是以不正當的廣告方式獲取不公平的利益,並銷售自已的產品。 本案將使商標權人對於日漸複雜的侵害類型獲得保障,如:仿冒品的販售及網路銷售等;此外,對於產品在做宣傳時也要小心使用比較性的文字(如:僅做產品性質差異的比對而非產品價格的比對),以免侵害他人商標權。