美國通過《音樂現代化法》(Music Modernization Act, MMA)

  美國於2018年10月11日正式簽署通過《音樂現代化法》(Orrin G. Hatch-Bob Goodlatte Music Modernization Act, MMA),該法搭起時代鴻溝的橋樑。《音樂現代化法》囊括三個從2017年分別通過的子法,並成為《音樂現代化法》中的三個大標題:

  第一部份:音樂授權現代化(Music Licensing Modernization)
  音樂作品本身的著作權、重製權是「大權利」(Grand Right),而公開傳輸權則是「小權利」(Small Right)。前者是恢復市場機制、自由議價,愈自由愈好;後者則是愈方便、愈能夠使音樂作品被世人看見愈好。《音樂現代化法》實踐了這個理想。《音樂現代化法》成立職司音樂著作授權的非營利組織「音樂機械灌錄集體授權組織」(The Mechanical Licensing Collective, MLC)。該組織是針對「數位音樂串流業者」量身打造,進行音樂數位使用(Digital Uses)的概括式授權(Blanket License)。再者,根據舊法,授權金是法定的,但《音樂現代化法》予以音樂創作人對其作品的授權金額保有協商權(Authority to Negotiate)。同時透過音樂資料庫的建立和免費線上檢索系統,方便音樂使用人查詢與媒合。

  第二部份:經典音樂法(CLASSICS Act)
  溯及賦予1923年1月1日至1972年2月14日之間的音樂,就未經授權而進行「數位錄音傳輸」(Digital Audio Transmissions)之行為,使之有從首次公開發行後95年的著作權保護。這裡授權的客體所會得到的權利相近於1972年後錄音著作「非互動式數位串流服務」所得到的保護。

  第三部份:音樂製作人分潤(Allocation for Music Producers)
  在科技世代,一個偉大的音樂創作,並非作曲人獨力完成的,《音樂現代化法》以分潤制度,讓音樂製作人、混音師及音訊工程師首次獲得法律上的權利。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國通過《音樂現代化法》(Music Modernization Act, MMA), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8143&no=64&tp=1 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
創用CC創始人主張合理使用對抗Youtube的移除通知

  創用CC(Creative Commons)的聯合創始人萊斯格在被強制移除他放在Youtube上的演講影片,影片包含群眾跳舞與受版權保護的音樂的剪輯,萊斯格之後即向美國聯邦法院提出申訴。   創用CC是一個非營利組織,創造各種自由的權利去促進著作的分享利用。   根據週四在美國麻塞諸塞區地方法院的訴狀,哈佛法學院教授萊斯格在2010年6月在南韓首爾一場創用CC的會議上,發表「文化與科技創新的現在和過去」的演講,此演講包含業餘音樂影片的剪輯,描繪一群人隨著法國樂隊「鳳凰」演奏的Lisztomania歌曲跳舞。   演講的影片在今年6月被放在Youtube網站上,萊斯格在6月30日接獲Youtube的通知,此影片被內容擁有者或被Viacome公司線上授權者依據Youtube的過濾程序辨識並阻止。大約在6月30日,澳洲墨爾本解放音樂(Liberation Music)公司也依據數位千禧年法案(DMCA),對Youtube提出了移除通知要求移除影片,因為侵害解放音樂的著作權。在6月30日,Youtube以電子郵件通知萊斯格影片已經被移除,萊斯格向Youtube提出反通知,Youtube轉發給解放音樂,解放音樂反過來威脅萊斯格,如果他不撤回反訴,將在麻塞諸塞州法院起訴他。   美國維護科技時代人權與自由的電子先鋒基金會(Electronic Frontier Foundation, EFF)代表萊斯格辯稱,使用剪輯的問題,特別是內容是一個有關文化和網路的公開演講,是被允許在合理使用的原則下,因此,並不侵害被告的著作權。萊斯格使用的著作權是最小範圍且非基於商業使用目的,也從娛樂改為教育目的。演講的影片並不造成任何市場的損害。

從法規及經營面探討電力線通訊開放的相關問題-從美國聯邦通訊委員會的管制措施談起

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與

  日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。   本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。

TOP