德國聯邦政府於2018年11月15日公布聯邦政府人工智慧戰略(Strategie Künstliche Intelligenz der Bundesregierung),除了針對人工智慧一詞定義外,並概述德國人工智慧戰略的3項基本原則,14項目標和12項行動領域。
第一項原則係透過該戰略,為德國在人工智慧(AI)的發展和應用制定整體政策框架,促進德國成為人工智慧最佳研究環境,以及人工智慧在產業與中小企業之應用,以確保德國未來競爭力。第二項原則係人工智慧在社會各領域有多種應用可能性,將可明顯促進社會進步和公民利益,因此重點將強調AI的應用對於人類和環境可帶來的益處,並加強社會各界對於人工智慧主題的密集交流及討論,確保AI朝負責且共同利益為出發點的開發及應用。第三項原則將透過廣泛的社會對話和積極的政策框架,將道德,法律,文化和制度結合人工智慧之應用融入整體社會。
該戰略列舉之工作項目同時包括評量標準,包含建置德法創意網(虛擬中心)、起草國家級且持續性的教育策略、加強相關創業投資力道、針對相關新創公司提供綜合性諮詢和推廣服務、針對自願提供且符合隱私規範之共享資料與建立資料分析基礎設備者研擬獎勵及促進框架、利用風險投資、創業融資和成長科技基金計畫擴展籌資機會、建立至少12個AI應用中心、將人工智慧列為研發機構跳躍式創新的焦點,未來5年加強產學研合作項目推廣、將環境與氣候的人工智慧應用列為發展亮點、共同決策人工智慧技術的導入與應用、透過中小企業4.0中心每年至少與1000家企業建立聯繫並進行AI訓練、將AI實驗室應用情境移轉至工作場所、進一步發展人工智慧平台學習系統、設計擘劃跨領域社會科學之「未來數位化工作與社會基金」、進一步制定相關數位化轉型專家策略、建立德國人工智慧觀測站、組織以人為中心的人工智慧工作環境之歐洲和跨大西洋對話、促進具自決權,社會與文化參與性及保護公民隱私之創新應用、聯邦政府於2025年前將投資約30億歐元於人工智慧發展、開發人工智慧生態系統、培養至少100名相關領域新教授、與資料保護監督機關及商業協會召開圓桌會議。
本文為「經濟部產業技術司科技專案成果」
有鑑於加密資產(crypto-asset)投資交易潛在風險與市場波動性,美國聯邦準備理事會(Federal Reserve Board)、聯邦存款保險公司(Federal Deposit Insurance Corporation, FDIC)與通貨監理局(Office of the Comptroller of the Currency, OCC)於2023年2月23日發布聯合聲明,提出加密資產增加銀行流動性風險情境,例如穩定幣因市場狀況之變動,導致銀行擠兌使大量存款流出,由於存款流入和流出的規模與時間的不可預測性,加密資產相關資金恐造成流動性風險提高,提醒銀行機構應用現有的風險管理原則審慎因應。 依據聲明內容,有效風險管理作法包括:(1)了解加密資產相關實體存款潛在行為的直接和間接驅動因素,以及這些存款易受不可預測波動影響的程度;(2)銀行機構應積極監控加密資產資金來源存在的流動性風險,並建立有效的風險管理控制措施;(3)應與加密資產存款相關的流動性風險納入應變計劃(contingency funding planning),例如流動性壓力測試;(4)評估加密資產相關實體存款之間關聯性。該聲明並強調銀行機構應建立風險管理機制及維持適當有效之內部控制制度,以因應加密資產高流動性風險,確保經濟金融穩健發展。
歐盟法院關於瑞典海盜灣線上分享平台(The Pirate Bay)之侵害著作權判決-歐盟法院(以下簡稱CJEU)於2017/07/14在Stichting Brein v Ziggo案中做出決定,認定瑞典海盜灣線上分享平台(The Pirate Bay,以下簡稱TPB)使用BitTorrent分享軟體涉及侵害公開傳輸權。 案例事實如下: Ziggo等網路服務供應業者(以下簡稱:ISP)之眾多用戶,在未得權利人同意之情況下,使用TPB平台經由BitTorrent軟體分享及下載存於用戶電腦之作品檔案。荷蘭著作權團體Stichting Brein向荷蘭法院聲請對該等ISP業者發出禁制令,令其阻斷TPB之IP網址及網域名。本案由荷蘭最高法院向CJEU提出判決先訴問題,確認在歐盟著作權指令第3(1)條下, TPB等網站管理者於其平台上雖不提供作品檔案,但使用前述分享軟體使網站使用者得搜尋並下載受著作權保護之作品,是否構成對公眾傳輸行為? CJEU之認定如下: 任何讓用戶得接近利用受保護之著作物,即構成歐盟著作權指令第3(1)條稱之傳輸行為。在本案中著作物是經由TPB,使平台使用者能於任何時間及地點接近利用著作物,雖著作物檔案是由其他使用者而非平台業者提供,但平台業者在使作品被接近利用上扮演者關鍵角色,例如將檔案作品分類、消除過時及有錯誤檔案等使作品檔案容易被定位及下載。 CJEU又指出, TPB已被告知其平台提供未經授權之著作物檔案,仍鼓勵使用者於平台上下載違法檔案,並經由廣告賺取可觀營收,故TPB不能主張其無從得知行為之違法性。因此CJEU認定TPB協助違法接近利用及分享著作物之線上平台,是足以構成著作權之侵害。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
歐盟執委會發布人工智慧創新政策套案歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。