美國《健康保險可攜性及責任法》(HIPAA)係「保護個人電子醫療資訊隱私」的法規。其「受規範對象」(Covered Entity)為:使用電子方式傳送任何醫療資訊的醫療計畫、健康資訊處理機構(Health Care Clearinghouses)或醫療照護提供者。2018年12月14日,美國衛生及公共服務部(下稱:官方)發表〈公眾意見徵詢書:修改HIPAA規則以促進整合醫療照護〉(Request for Information on Modifying HIPAA Rules to Improve Coordinated Care),擬修正方向如下:
(一)促進醫療行為、整合醫療照護、專案管理的資料分享
HIPAA原先僅允許受規範機關在醫療行為、支付、營運中揭露受保護健康資訊(PHI)。然而,這並不包含醫療照護或專案管理。官方傾向修法讓醫療照護或專案管理成為允許揭露PHI的情形。同時,也希望修法讓PHI的取得更具時效性,以利於病歷在受規範對象間的流通。
(二)推動親友參與解決當事人鴉片類藥物成癮和精神疾病問題
HIPAA允許受規範對象在特定條件下,向照護者(Caregiver)揭露PHI,包含緊急狀況,也包含嚴重的精神疾病。然而,許多受規範對象因為擔心違反HIPAA,而不願通知當事人的親友。這種狀況相當不利於整合醫療照護和專案管理的發展。目前官方尚未研擬出具體改善方法,希望外界可以提出方案。
(三)會計資料的揭露以存取報告代替
在當事人申請下,受規範對象或其商業夥伴應提供近六年內與PHI相關的會計資料。然而,許多受規範對象的系統無法分離出應提供給當事人的部分,只好提供整份會計資料,因而造成龐大負擔。官方擬修法,只提供當事人「存取報告」(Access Report),該報告會載明誰曾經存取電子紀錄。
(四)隱私權行為通知(Notice of Privacy Practices)
受規範對象在許多狀況下,需取得當事人隱私權行為通知的書面同意書,這次的修法希望可以減少書面同意,以利於受規範對象發展整合醫療照護。
本文為「經濟部產業技術司科技專案成果」
為確保各會員國能有效執行歐盟科研架構計畫(Horizon 2020),歐盟執委會每年針對各會員國整體創新能力及研發活動進行評估,據此研提創新競爭力排名,並定期公布歐盟創新計分板報告(European Innovation Scoreboard, EIS)。而觀諸最新公布2016歐盟創新計分板報告((European Innovation Scoreboard 2016),可歸納以下三項要點: (一) 2016歐盟創新研發能力成長趨緩 由於研發資金政策之限制以及英國脫歐影響下,相較於去年(2015)歐盟創新計分板報告(European Innovation Scoreboard 2015, EIS)之統計,今年度(2016)歐盟整體之創新研發能力成長趨緩。 (二) 2016創新研發先驅仍為瑞典,部分國家仍有大幅度之成長 而今年之歐盟創新計分板報告在整體創新競爭力排名上,第一名仍為瑞典,其次則為丹麥,芬蘭,德國和荷蘭。而相較於去年之排名,拉脫維亞、馬爾他、立陶宛、荷蘭等國家則有顯著之成長。 (三) 在個別指標項目中,會員國創新表現亦有不同 此外,獨立創新指標項目中,各會員國亦有不同之創新表現,例如:在「創新人力資源」及「學術研究項目」中,由瑞典榮獲最具競爭力之國家;而在「創新財政環境」項目中第一名為芬蘭;「創新私人投資」、「創新網絡」及「中小企業創新」等三大項目中,則分別由德國、比利時及愛爾蘭奪冠。
「環境科技、環境政策與貿易」專題連載(3):環保標章、環境商品市場拓展與貿易 產業競爭力強化法新發展-以企業實證特例制度實例為中心 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現