美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。
在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。
在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。
本文為「經濟部產業技術司科技專案成果」
美國能源局(EPA)宣布,將創建三個生質能源研究中心(bioenergy centers),以研發將植物轉化為燃料的技術方法。此舉乃是布希總統作出美國在未來十年內將降低20%的石油用量之政策宣布後,第一個採取具體配套行動的聯邦政府機關。 生質能源研究中心設立的宗旨是希望在未來五年內能夠以先進技術,成功開發生質能源的產品上市。根據EPA的對外公告資料,三大生質能源研究中心將以公司組織的形式運作,每一個研究中心總投入資本將高達1億2千5百萬美元,三大研究中心分別是位在田納西州Oak Ridge、威斯康辛州的Madison以及加州Berkeley附近,這些區域原本就是重要的研究重鎮,匯聚許多的大學、國家實驗室以及私人企業,形成產業聚落,預計三大生質能源研究中心將自2009年9月1日起的預算年度開始運作。 EPA希望藉由研究中心的聚落效應,集中資源協助這些研究中心從自然界中破壞木質素(lignin)的微生物出發,找出植物的確切細胞膜質(cellulose)之所在。細胞膜質或稱纖維素,是轉化成為乙醇、液態燃料等能源的重要來源物質,因此這些生物運轉機制的瞭解與掌握,乃是開發生物能源技術的基礎。 值得注意的是,各國致力於發展生物燃料以替代汽油的政策,已經使得某些兼具多種用途的作物價格持續攀升,此可由國際期貨市場價格獲得印證。為避免生物燃料的發展反而造成食用作物的搶奪大戰,影響作物市場價格,研究中心也將致力於尋找可以製造較易處理的木質素的新作物種類。
馬來西亞與印尼反駁對棕櫚油生產破壞環境之指控馬來西亞農產業與產品部長(the Minister of Plantation Industries and Commodities)與印尼農業部長(the Minister of Agriculture)在今(2007)年5月25日共同表示,將採取行動來反制歐洲境內對其所生產棕櫚油有破壞生態環境之虞的論述。在全球暖化的議題發燒且歐盟設定再生能源使用目標的政策導引下,以棕櫚油為原料製造生質柴油的市場需求預期會大幅增加,這兩個全球最大棕櫚油產國於是認為許多對其棕櫚油生產不符永續發展要求的「不實」指控會影響其國內相關產業之發展。兩國政府與產業代表將以舉辦座談會、拜會歐洲各國官員與非政府組織的方式來提供「正確」資訊,同時兩國亦設定提升兩國棕櫚油年產量至1200萬公噸的目標。 然而世界自然基金會德國分會(WWF Germany)所發表的報告指出,棕櫚油之需求增加恐會導致棕櫚油產國的熱帶雨林遭砍伐來作為棕櫚樹的耕地。地球之友(Friends of the Earth)表示,目前已有90%的紅毛猩猩棲息地被破壞,此趨勢繼續下去野生紅毛猩猩將在12年內滅絕;綠色和平組織(Greenpeace)則指出印尼在2000至2005年間以全球最快的速率在砍伐森林,每小時有相當300個足球場面積的林地被破壞。此外,棕櫚油永續生產圓桌會議(the Roundtable on Sustainable Palm Oil,RSPO)亦開始研議棕櫚油生產的最低生態標準,希望能確保其生產符合永續發展之要求。
智慧財產權管理標準之建立-由管理系統標準談起(下) 日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。