人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例
資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日
壹、事件摘要
美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。
本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。
貳、重點說明
2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。
根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:
(1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。
(2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。
(3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。
(4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。
雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。
CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]:
後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。
由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。
另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。
參、事件評析
《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。
然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:
一、「理解」演算法?
根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]
二、如何要求演算法透明度?
指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。
三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?
FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。
肆、結語
隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。
然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。
[1] 21 U.S. Code §360j
[2] FD&C Act Sec. 520(o)(1)(A)
[3] FD&C Act Sec. 520(o)(1)(B)
[4] FD&C Act Sec. 520(o)(1)(C)
[5] FD&C Act Sec. 520(o)(1)(D)
[6] FD&C Act Sec. 520(o)(1)(E)
[7] FD&C Act Sec. 520(o)(1)(E)(i)
[8] FD&C Act Sec. 520(o)(1)(E)(ii)
[9] FD&C Act Sec. 520(o)(1)(E)(iii)
[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)
[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)
[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8
[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[15] 21th Century Cures Act, Sec. 3060(b)
[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)
[17] Id.
[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)
[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
美國、日本、韓國於2024年4月25日舉辦首屆「顛覆性技術保護網路高峰會」(Disruptive Technology Protection Network Summit,下稱高峰會),就顛覆性技術保護展開正式合作。 此高峰會係為履行三國於2023年8月18日「大衛營」(Camp David)峰會作出之「未來每年度應至少舉行一次三方國家會談」承諾。美國積極利用此高峰會,深化美國顛覆性技術打擊小組(Disruptive Technology Strike Force)與日本、韓國相應執法單位的資訊交換機制或經驗分享,加強技術保護及打擊相關犯罪活動。有關本次高峰會進展,簡要彙整如下: 一、經驗與案例分享:三國執法單位各自說明其技術保護工具、政策之最新舉措,並進行執法案例分享。 二、相關執法單位簽署合作意向書: (一)美國司法部(The Department of Justice)、日本警察廳(警察庁)和韓國法務部(법무부)共同簽署「深化技術外洩執法資訊分享合作意向書」(Letter of intent on deepening information sharing for tech leak law enforcement)。 (二)美國商務部(The Department of Commerce)、日本經濟產業省(経済産業省)和韓國產業通商資源部(산업통상자원부)共同簽署「實施出口管制合作意向書」(Letter of intent for cooperation on export control implementation)。 三國共識非法出口貨品或移轉技術行為,已對國家安全、經濟安全構成威脅,除持續優化相關法規外,有必要強化三國「執法面」連結,進行較即時的打擊犯罪跨國合作,防範民族國家境外勢力(Nation-state adversaries)以不正當手段獲取先進技術,並建立更全面的國際「顛覆性技術保護網路」(Disruptive Technology Protection Network)。
美國FDA計畫舉辦3D列印技術於醫療運用下之法制探討會議隨著3D印表機的價格日趨親民、3D列印設計檔案於網際網路交流越趨頻繁,以及預期3D列印技術在未來的應用會更加精進與複雜化,3D列印技術於醫療器材製造面所帶來的影響,已經逐漸引起美國食品藥物管理局(FDA)的關注。 在近期FDA Voice Blog posting中,FDA注意到使用3D列印所製造出的醫療器材已經使用於FDA所批准的臨床干預行為(FDA-cleared clinical interventions),並預料未來將會有更多3D列印醫療器材投入;同時,FDA科學及工程實驗辦公室(FDA’s Office of Science and Engineering Laboratories)也對於3D列印技術就醫療器材製造所帶來的影響進行調查,且CDRH功能表現與器材使用實驗室(CDRH’s Functional Performance and Device Use Laboratory)也正開發與採用電腦模組化方法來評估小規模設計變更於醫療器材使用安全性所帶來的影響。此外,固體力學實驗室(Laboratory of Solid Mechanics)也正著手研究3D列印素材於列印過程中對於醫療器材耐久性與堅固性所帶來的影響。 對於3D列印就醫療器材製造所帶來的法制面挑戰,在Focus noted in August 2013中,其論及的問題包含:藉由3D列印所製造的醫療器材,由於其未經由品質檢證是否不應將其視為是醫療器材?3D列印醫療器材是否需於FDA註冊登記?於網路分享的3D列印設計檔案,由於未事先做出醫療器材風險與效益分析,FDA是否應將其視為是未授權推廣等問題。 針對3D列印於醫療器材製造所帶來的影響,CDRH預計近期推出相關的管理指引,然FDA認為在該管理指引推出前,必須先行召開公聽會來援引公眾意見作為該管理指引的建議參考。而就該公聽會所討論的議題,主要依列印前、列印中與列印後區分三階段不同議題。列印前議題討論包含但不限於材料化學、物理特性、可回收性、部分重製性與過程有效性等;列印中議題討論包含但不限於列印過程特性、軟體使用、後製程序與額外加工等;列印後議題討論則包含但不限於清潔/多餘材料去除、消毒與生物相容性複雜度影響、最終裝置力學測定與檢證等議題。
NHTSA要求自動駕駛系統及L2自動駕駛輔助系統回報意外事件美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)2021年6月29日 「自駕車與配備等級2駕駛輔助系統車輛之意外事件回報命令(Standing General Order 2021-01:Incident Reporting for Automated Driving Systems and Level 2 Advanced Driver Assistance Systems)」,課予系統製造商與營運商意外事件回報義務,重點如下: (1)適用範圍:全美境內公共道路上發生之車輛碰撞事件,事發前30秒至事件結束期間內曾經啟用等級2駕駛輔助系統或自動駕駛系統。 (2)意外事件定義:事件中任何一方有人員死亡或送醫治療、車輛必須拖吊、安全氣囊引爆或事件涉及弱勢用路人(vulnerable road user)。 (3)回報期限:須於知悉事件後隔日立即回報,知悉後10日傳送更新資料,如後續仍有發現新事證,應於每月15號傳送更新。自駕車發生碰撞,即使無人傷亡、無車輛拖吊或安全氣囊引爆,仍需於次月15號傳送事件回報。 (4)回報方式及項目:需至NHTSA指定網站註冊帳號,線上填寫制式通報表格。項目包含車籍資料、事件時間、地點、天候、路況、傷亡及財損情形等等。 NHTSA收到的回報資料,原則上會在將個人資料去識別化後對大眾公開,惟若系統製造上或營運商主張部分資訊為商業機密,可另行向NHTSA之諮詢辦公室通報審核。如逾期未報或隱匿資訊,可處每日最高22,992美元罰金,累計最高罰金為114,954,525美元。
歐洲議會近日通過《數位營運韌性法案》,堅守數位金融市場安全為因應金融產業數位化及鼓勵金融業創新,並在打造歐盟金融業競爭之同時,確保消費者之保護及金融市場之穩定,歐盟執委會於2020年9月間通過「數位金融整體計畫」(Digital Finance Package),該計劃包含之項目十分廣泛,建構了歐盟未來對於數位金融市場之整體性立法框架。 而2022年11月甫通過之「數位營運韌性法案」 (Digital Operational Resilience Act, DORA)便是數位金融整體計畫中之一分支,該法案預計將於2025年生效。有鑑於過去歐盟會員國各自對資通安全事件行動效果有限,且國家措施之不同調導致重疊、不一致、重複之要求而產生高昂之行政和法遵成本,此情況分裂了單一市場,破壞了歐盟金融機構之穩定性和完整性,並危及消費者和投資者保護,遂有本法案之誕生。 本法案主要之訂定目的在於建立資通安全事件之要求標準及通報流程機制以加強銀行、保險業、投信投顧等金融業者之資通安全,使其面臨網路攻擊時,能保有韌性及恢復力,並維持正常之營運狀態。具體而言,本法案為促金融業者達成高度數位經營韌性之統一要求,遂要求金融業者採取以下手段: (一)資通風險管理監控 (二)資通事件之報告及建立於自願基礎上之重大網路威脅通報 (三)向主管機關通報重大營運或支付安全有關之事件 (四)數位營運韌性檢測 (五)有關網路威脅或漏洞有關之資訊情報共享 (六)健全控管對第三方資通技術供應者之機制。 總地而論,本法案透過建立歐盟統一之資通安全事件通報原則及營運韌性檢測標準等方式加強歐盟之眾金融機構在受網路攻擊之應對能力,且將可避免過去各國間無法取得共識,金融機構於發生資通安全事件時手足無措之窘境,值得讚許,或可為我國未來借鏡採納。