英國環境食品與鄉村事務部於2018年12月18日提出「英國資源與廢棄物策略」(Resources and waste strategy for England),以全面性的角度提出英國對資源與廢棄物的處理政策,包含如何最有效利用資源與最小化廢棄物的產出,追求在2050年達到加倍資源生產力,並禁絕包含塑膠廢棄物在內之可避免廢棄物產生,作為英國推動循環經濟的政策藍圖。
這份政策文件可以區分為三大部分,第一部分為產品的生命週期,包含從製造、消費到生命週期的完結;第二部分為主要議題,聚焦在論證環境犯罪(waste crime)與食物浪費(food waste)此兩大議題並不適用於前述的產品生命週期;並且在第三部分的未來展望上,提出三大面向突破傳統的產品生命週期觀點,包含國際領導(international leadership)、研究創新(research & innovation)與監管措施(data, monitoring and evaluation),建立起資源與產品生命週期的循環,以達到追求最大化資源利用效益與最小化廢棄物產生的目標。
在政策文件當中特別呼應了歐盟塑膠對策(EU Plastic Strategy),強調在英國針對塑膠議題提出的2025指引(The UK Plastics Pact – A Roadmap to 2025)當中,目標在2025年達到消滅無法處理或一次性使用之塑膠廢棄物,使用100%可再利用、回收或可分解之塑膠包材,達成70%的塑膠包材可回收或分解效率,並於塑膠包材中使用30%以上的可再生原料。
本文為「經濟部產業技術司科技專案成果」
英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。 在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。 在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。 在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑 除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。
歐盟發布《歐洲資料治理規則》草案歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。 依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。
歐盟要求自4月15日起,進口至歐盟的中國米類產品應檢附非基改證明根據歐盟GMO食品上市規則,唯有通過歐盟EFSA的安全評估並經歐盟審查通過發給上市許可的GMO,始得於歐盟境內流通上市。 過去兩年,歐盟陸續發現其自中國進口的米類產品,被未經許可的基改稻米Bt 63污染,對歐盟的食品安全產生重大疑慮,因而引起歐盟官方及消費大眾的高度關注。為此,中國主管當局雖已請求歐盟提供有關此非法GMO之基因構成(genetic constructs)的詳細資訊,並針對歐盟會員國通報至Rapid Alert System for Food and Feed(RASFF)的案件,開始進行調查並暫時禁止相關業者出口米製品,不過中國迄今未能依歐盟要求,提供其在實施出口管理時的控制樣品,以及其所使用的檢測方法與歐盟所要求者,具有相同品質之證明。 因此,歐盟已在今(2008)年2月通過一項緊急措施的決定,要求自4月15日起,進口至歐盟的中國米類產品應檢附非基改證明(GMO-free certification),且此非基改證明應由歐盟官方所設立或認可之實驗室,使用特定的GMO檢測技術檢測後,檢測結果發現未含有GMO成分時,始能核發非基改證明。 雖然歐盟並非我國農產品的主要外銷國家,但歐盟此項緊急措施仍值得我國注意,蓋我國當前GMO的進出口管理法制與先進各國尚有所落差,而我國最主要的農產品出口國—日本,其GMO管理法律中亦有授權主管機關對進口產品實施生物檢查(即是否含有GMO的檢測)的規定,倘若我國在發展GMO時,未能妥善落實GMO的管理,不無可能對非基改產品造成重大衝擊,當前歐盟要求中國出口的米類產品應檢附非基改證明,即是一例。
日本經產省公布AI、資料利用契約指引伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。 針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。 「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。 AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。