美國專利制度中的「銷售阻卻」(On-Sale Bar)係指:發明銷售超過一年以上便喪失新穎性,不授予專利。
「新穎性」為美國專利法上可專利性要件之一。35 USC §102(a)(1)說明新穎性先前技術的例外(Novelty; Prior Art):「專利申請應被核准,除非該發明已申請專利、曾在紙本文件敘述、公開使用(In public use)、販售(On sale)、或以其他方式公開(Or otherwise available to the public)。」35 USC §102(b)(1)則給予專利發明人和申請人1年新穎性優惠期(Grace Period)。將前後兩個條文合併來看--假設該發明銷售超過一年以上便不得再授予專利。
「銷售阻卻」的立法意旨在於:避免發明人或其權利受讓人先將發明商業化並獲利,待競爭者進入市場後才提出專利申請,藉此有效地延長專利保護的期間,進而產生獨占(Monopoly)。
1998年,美國最高法院於Pfaff v. Wells Electronics (1998)一案,揭示銷售阻卻的要件:(1)該產品必須是商業上販售的標的;(2)該發明必須已經準備好要進行專利申請。唯有這兩個要件成就,才開始計算「一年」。
本文為「經濟部產業技術司科技專案成果」
新加坡為實現「智慧國家」(Smart Nation)願景,長期致力於數位發展政策之推動。當中,在「協助產業加速數位化」方面,針對中小企業建置「中小企業數位化計畫」(SMEs Go Digital),並將其下「預先批准解決方案」(Pre-Approved Solutions)與「生產力解決方案補助金」(Productivity Solutions Grant, PSG)列為重要措施之一;甚而,於此波COVID-19疫情下,新加坡再度強化該等制度之運用,藉此加速中小企業數位發展進程。 所謂「預先批准解決方案」與「生產力解決方案補助金」,係指中小企業得透過企業科技庫(Tech Depot)網頁,了解中小企業數位化計畫下有哪些經過資通訊媒體發展管理局(Infocomm Media Development Authority, IMDA)預先批准的數位解決方案,並在取得供應商報價後,向新加坡企業發展局(Enterprise Singapore, ESG)申請「生產力解決方案補助金」之支援。於COVID-19疫情發生前,預先批准的數位解決方案包含「銷售與庫存管理」、「會計與文件管理」、「顧客關係管理」、「人力資源管理」、「網路安全」、「行動裝置門禁控制」及「車隊管理」等等13項系統,中小企業最高得享有報價70%的補助。 於COVID-19疫情發生後,除原有數位解決方案外,IMDA再預先批准下列內容,ESG亦於2020年4月1日到2020年12月31日間將所有方案的最高補助水平提升至80%,協助中小企業因應疫情並維持業務連續性: 遠距上班─線上協作工具(Online collaboration tools) 遠距上班─虛擬會議和電話工具(Virtual meeting and telephony tools) 訪客管理─佇列管理系統(Queue management system) 訪客管理─溫度檢測方案(Temperature screening solutions) 新加坡為因應COVID-19疫情,加強適用原有中小企業數位化計畫下的預先批准解決方案與生產力解決方案補助金,在既有制度上迅速地進行調整,以減緩疫情造成的產業衝擊,甚至加速中小企業數位發展之進程;另一方面,藉由COVID-19的特性,協助中小企業導入遠距上班與訪客管理等數位技術,改善過往因資金有限而未能優化營運基礎設備之難題,為中小企業開啟新的可能。
用數字解讀國內企業的智財管理能量 美國加州通過《基因資訊隱私法》針對基因資訊建立個資保護機制美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。 上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。 GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。