美國專利制度中的「銷售阻卻」(On-Sale Bar)係指:發明銷售超過一年以上便喪失新穎性,不授予專利。
「新穎性」為美國專利法上可專利性要件之一。35 USC §102(a)(1)說明新穎性先前技術的例外(Novelty; Prior Art):「專利申請應被核准,除非該發明已申請專利、曾在紙本文件敘述、公開使用(In public use)、販售(On sale)、或以其他方式公開(Or otherwise available to the public)。」35 USC §102(b)(1)則給予專利發明人和申請人1年新穎性優惠期(Grace Period)。將前後兩個條文合併來看--假設該發明銷售超過一年以上便不得再授予專利。
「銷售阻卻」的立法意旨在於:避免發明人或其權利受讓人先將發明商業化並獲利,待競爭者進入市場後才提出專利申請,藉此有效地延長專利保護的期間,進而產生獨占(Monopoly)。
1998年,美國最高法院於Pfaff v. Wells Electronics (1998)一案,揭示銷售阻卻的要件:(1)該產品必須是商業上販售的標的;(2)該發明必須已經準備好要進行專利申請。唯有這兩個要件成就,才開始計算「一年」。
本文為「經濟部產業技術司科技專案成果」
日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
美國國家標準技術研究院公告制訂「智慧電網架構與互通性標準2.0版」為因應智慧電網應用技術發展趨勢,美國商務部(Department of Commerce)國家標準技術研究院(National Institute of Standards and Technology,以下簡稱NIST)於今(2012)年2月正式制訂「智慧電網架構與互通性標準2.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0),以下簡稱互通性標準2.0版」,以作為其國內佈建智慧電網建設之重要政策依據,並協助導引各電網間加強互通性之達成。 美國NIST係為「2007年能源獨立及安全法案(Energy Independence and Security Act of 2007)」所明文指定智慧電網互通性架構(Smart Grid Interoperability Framework)負責機構,所以自2008年開始投入規範研議工作,2010年1月公告「智慧電網架構與互通性標準1.0版(NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0)」,主要為先規範概念性示範建置架構(Conceptual Architectural Framework),明訂8大優先領域(Priority Areas),驗證公告75項特定標準,並後續設立建置「互通性發展平台(Smart Grid Interoperability Panel,以下簡稱SGIP)」。 隨著美國推動智慧電網發展進程,及因應相關應用技術日益新異,NIST陸續展開討論工作,至今(2012)年2月正式對外公告研議完成互通性標準2.0版之定稿。此新版本重要增訂內容有:新增「國際智慧電網標準」及「國際互通性調和」章節;對於SGIP優先行動方案(Priority Action Plans)2012年新增19項推動項目;並且,規劃新增概念示範參考模式(Conceptual Reference Model)類型,及增加資訊網絡模型;以及,新增「智慧電網標準驗證程序(Process of Future Smart Grid Standards Identification)」規範,及對於專業應用領域區分「輸配電(Transmission and Distribution)」、「家庭to電網(Home-to-Grid)」、「建築to電網(Building-to-Grid)」、「工業to電網(Industry-to-Grid)」、「車輛to電網(Vehicle-to-Grid)」、「再生能源(Distributed Renewables, Generators, and Storage)」、「商業與政策(Business and Policy)」分別進行研析實務應用;再者,亦研訂「互通性基礎資訊知識(Interoperability Knowledge Base)」、「高位階發展指導方針(High-level framework development guide)」、「互通性程序參考手冊(Interoperability process reference manual)」等等重要遵循規範。 未來NIST及SGIP將與能源部(Department of Energy)、聯邦電力管理委員會(Federal Energy Regulatory Commission)共同合作,依據互通性標準2.0版所研議制訂規範,及重要因應議題,陸續規劃展開各項推動方案,共同促進美國智慧電網建設與應用發展。
美國國際貿易委員會(USITC)發布「全球數位貿易報告,推動數位經濟新機會」 英國DECC發佈實施智慧電表對隱私影響評估報告英國能源與氣候變遷部 (Department of Energy & Climate Change, DECC) 於2012年十二月十二日,依據歐洲執委會於同年三月針對智慧電表系統推展準備所發表的建議 (2012/148/EU: Commission Recommendation of the 9th March 2012 on preparation for the roll-out of SM systems, Section 1.4),公佈其就智慧電表實施計畫對隱私影響的評估 (Privacy Impact Assessment)。 該項評估羅列了十一項面向,分別探討其可能因智慧電表實施對隱私帶的衝擊。這些面向包括有智慧電表為防範非法、未經授權資料近取的安全性管理,中央、地方政府機關及執法單位為他途而對資料的使用,第三人對細部能源消費資料的取得,對電表資料過長時間的保留,及非帳戶持有人對能源消費資料之取得等。 該部部長巴洛妮絲‧菲瑪 (Baroness Verma) 表示: 消費者是最重要的,因此能源與氣候變遷部在推動智慧電表實施的同時,亦致力於隱私、安全、消費者保護及通信等議題的處理。 除此之外,DECC並針對應如何]執行歐盟於同年十月二十五日通過的能源效率指令(Energy Efficient Directive 2012/27/EC) 中,第十條第二項B款所定關於消費者對去過去至少二十四個月能源消費資料應有簡易取得方式之要求,展開公開諮詢的程序。 英國智慧電表的全面推行預計從2014年展開至2019年結束前完成。其是否能在確保公眾能源消費資料不受非侵害或不當利用的前提下,發展各項配套措施以完成這項各國皆欲達成浩大工程,令人期待。