美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下:
(1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。
(2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。
(3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。
(4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。
(5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。
(6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。
(7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。
(8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。
(9)人工智慧所產生之責任,應由設計者以及建造者負擔。
(10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。
(11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。
(12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。
(13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。
(14)人工智慧之技術應盡力滿足越多人之利益。
(15)人工智慧之經濟利益,應為整體人類所合理共享。
(16)人類對於人工智慧之內在目標應享有最終設定權限。
(17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。
(18)人工智慧所產生之自動化武器之軍備競賽應被禁止。
(19)政策上對於人工智慧外來之發展程度,不應預設立場。
(20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。
(21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。
(22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。
(23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。
本文為「經濟部產業技術司科技專案成果」
美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。
車聯網「V2V」簡介V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。 V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。 無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。
瑞士洛桑管理學院發布2020世界競爭力評比報告瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年6月發布2020世界競爭力評比報告(IMD’s 2020 World Competitiveness Ranking 2020 results)。此份報告共評比 63 個經濟體,全球競爭力前5名依序為新加坡、丹麥、瑞士、荷蘭與香港;其他重要經濟體之排名包含加拿大為第8、美國第10、臺灣第11、中國第20、南韓第23與日本第34。 2020世界競爭力評比以有「經濟表現」(Economic Performance)、「政府效能」(Government efficiency)「企業效能」(Government Efficiency)和「基礎建設」(Infrastructure)四大評比指標,旗下再細分為340個子標,例如人均GDP、對外直接投資佔GDP比例、國際貿易、國際投資、財政、勞動力市場、顧客滿意度受企業重視程度、健康與環境基礎建設、研發人力比例、研發總支出占GDP比例等。此次評比中,可以看出小型經濟體(如新加坡、香港、丹麥等)因容易凝聚社會共識,表現較為優異。而排名退步的國家如中國和美國,乃因兩國之間貿易戰損害經濟表現(美國從2019年第3掉至今年第10,中國自14掉至20)。香港亦從2019年的第2排到第5,其經濟表現下降乃因社會動盪以及中國貿易戰影響。 我國在此次評比中表現優異,綜合排名第11名,較2019年上升 5 名;且我國在亞太地區中高居第 3名,僅次於新加坡和香港,為 2016 年以來最佳成績。評比指標之政府效能、企業效能、基礎建設排名均有進步,其中政府效能排名全球第9,首次進入世界前10名。