美國加州「Asilomar人工智慧原則決議」

  美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下:

(1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。
(2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。
(3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。
(4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。
(5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。
(6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。
(7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。
(8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。
(9)人工智慧所產生之責任,應由設計者以及建造者負擔。
(10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。
(11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。
(12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。
(13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。
(14)人工智慧之技術應盡力滿足越多人之利益。
(15)人工智慧之經濟利益,應為整體人類所合理共享。
(16)人類對於人工智慧之內在目標應享有最終設定權限。
(17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。
(18)人工智慧所產生之自動化武器之軍備競賽應被禁止。
(19)政策上對於人工智慧外來之發展程度,不應預設立場。
(20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。
(21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。
(22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。
(23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國加州「Asilomar人工智慧原則決議」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8213&no=67&tp=5 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
澳洲立法強制Google及Facebook向媒體業者支付合理費用

  2020年4月20日澳洲政府要求澳洲競爭及消費者委員會(Australian Competition and Consumer Commission, ACCC)草擬強制性行為準則,以解決澳洲新聞媒體業者與數位平台(特別是Google及Facebook)間不對等的議價地位問題,由於2019年ACCC曾嘗試讓Google、Facebook自願與業者議價,並訂定相關程序準則,但事後成效不彰。為因應政府要求,ACCC於同年7月31日公布一份行為準則草案,「2020年修正草案—新聞媒體與數位平台強制性議價守則」(TREASURY LAWS AMENDENT (NEWS MEDIA AND DIGITAL PLATFORMS MANDATORY BARGAINING CODE) BILL 2020)。   此行為準則允許新聞媒體業者各自或集體向數位平台協議使用新聞內容的合理費用,請求費用的媒體公司至少須符合最低的編輯專業標準,並保持編輯獨立性,且每年營收須超過15萬澳元。雖然目前草案只適用於Google及Facebook,但未來也可能有其他數位平台列入適用範圍。   澳洲財政部長Josh Frydenberg表示,此準則設立的目的,是為了保護媒體公司著作內容的原創性,並確保業者能獲得合理的報酬,若Google及Facebook三個月內,無法與媒體公司達成報酬協議,將命仲裁員做出具有約束力的決定,違反規定者將會被裁處1000萬澳元的罰款。   此草案公布後,預計於8月28日完成磋商審議程序,並向議會提出最終草案版本,經議會通過後正式生效。由ACCC負責執行並管理該準則,而新聞媒體業者的資格則由澳洲通信媒體管理局(The Australian Communications and Media Authority)認定之。

美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度

2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。

美國參議員提案修改股票選擇權(stock option)租稅處理優惠

  美國參議員Carl Levin最近提出一項名為「終止公司股票選擇權租稅優惠法」(Ending Corporate Tax Favors for Stock Options Act, S. 2116,以下簡稱:股票選擇權租稅優惠終止法)的草案,主要目的是希望改變公司對於股票選擇權費用化的租稅處理(tax treatment of corporate stock option deductions)。   就租稅意義而言,公司發給員工(包括高階經理人及一般員工)的股票選擇權為薪資的一種,而根據美國內地稅法規定,目前公司在申報股票選擇權的薪資支出(compensation expense)減項時,可以申報的費用比公司帳簿上所登載的更高。由於此一稅法上獨厚股票選擇權的處理,使得近年來許多美國企業支付給主要高階經理人的薪資,有一大部分是股票選擇權,此現象在科技產業亦甚為顯著,其結果造成公司高階經理人與一般員工的薪資差距越益擴大。   「股票選擇權租稅優惠終止法」要求公司於薪資支出項下申報的股票選擇權費用,必須與公司帳簿所記載的數目一致,同時,股票選擇權也應與其他類別的公司薪資費用一樣,同樣受到1百萬美元的費用上限之申報限制,至於股票選擇權申報費用的時點,則不須要等到選擇權行使(exercise)的年度。

歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

TOP