美國國會於2018年8月13日通過之《出口管制改革法》(Export Control Reform Act of 2018, ECRA)第1758條,以國家安全為由,授權商務部建立對美國新興與基礎技術出口、再出口或移轉之認定與管制程序。有鑑於此,商務部下轄之工業安全局(Bureau of Industry and Security, BIS)於同年11月19日發布了法規制定預告(advance notice of proposed rulemaking),對外徵求關於認定「新興技術」之意見。
BIS指出,美國政府多年來依循《出口管制條例》(Export Administration Regulations, EAR)限制特定敏感技術或產品出口,以避免關鍵技術落入他國手中。惟既有之審查範圍已不足以涵蓋近年許多重大創新技術,故BIS先行臚列了14項擬在未來實施出口管制的新興科技,向公眾徵求其是否確屬「涉及國家安全之特定新興技術」相關意見。該14項科技包含:(1)生物技術;(2)人工智慧與機器學習技術;(3) 定位、導航和定時技術;(4)微處理器技術;(5)先進計算技術;(6)數據分析技術;(7)量子信息和傳感技術;(8)物流技術;(9)積層製造技術;(10)機器人;(11)腦機介面;(12)高超聲速;(13)先進材料;(14)先進監控技術。
除此之外,民眾亦得對如何認定「新興技術」提出一般性之意見,俾將來政策實施更加周全。意見徵求期間從2018年11月19日起,至2019年1月10日截止。
本文為「經濟部產業技術司科技專案成果」
美國電子隱私資訊中心(The Electronic Privacy Information Center, EPIC)向聯邦貿易委員會(Federal Trade Commission, FTC)檢舉Uber利用手機軟體"God view"追蹤並蒐集軟體用戶(乘客)位置資訊,並利用該資訊發送廣告給乘客。EPIC主張該作法為違法、詐欺的商業模式。 議員Al Franken對該軟體用戶服務條款也提出質疑,因該服務條款載明即使用戶終止使用,該軟體仍將繼續蒐集用戶的位置資訊,並可無限期使用用戶的個人資料。雖然Uber後續對該服務條款進行增修,但仍對外主張保有最後解釋的權利。 EPIC認為目前依「駕駛隱私法」(Driver's Privacy Act )的規定,除具要求提供車輛資料的法源依據,或個人同意並被告知資料將如何使用之情形,才可以蒐集該車輛資料以維護駕駛隱私,否則不得蒐集與該車輛的任何記錄與資料。然而,EPIC亦認為應立法禁止使用軟體追蹤乘客與蒐集其資料。EPIC同時也建議應制定法規限制 Google、Facebook、Whatsapp、Snapchat等公司追蹤及蒐集顧客資料。對此,Facebook僅表示會確保用戶的位置資訊不被濫用,而Google則拒絕對此發表評論。 另外,EPIC認為Uber蒐集用戶位置資訊,並隨著時間的推移來追蹤用戶(乘客)動向資料並進行廣告行銷,對用戶的隱私權保護並不完整,且用戶資料也有被盜取之可能,因此,EPIC希望FTC能對Uber"God view"軟體進行調查,希望促成規制用戶(乘客)資料蒐集、處理與利用的商業模式。
大學研發成果商業化評估方法初探 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國知名嘻哈歌手Dr. Dre對婦產科醫生的商標註冊提出異議遭駁回2015年美國賓州的一位婦產科醫生Draion M Burch(以下簡稱Burch)申請註冊「Dr. Drai」商標在國際商品服務類別41(教育及娛樂服務)及44(醫療諮詢服務)以行銷自身的有聲書籍及研討課程。美國知名的嘻哈歌手Dr. Dre認為,該商標與自身的「Dr. Dre」【已註冊國際商品服務類別9(系列音樂錄製)、16(海報、美術印刷及貼紙)、25(T恤、長袖衫、帽子)、41(由音樂藝術家及創作者提供之娛樂服務)】雖拼法不同但讀音相同,會引起消費者的混淆,因而向商標審理暨訴願委員會(Trademark Trail and Appeal Board, TTAB,下稱委員會)提出異議。 委員會認為,雖然「Dr. Dre」與「Dr. Drai」兩者類似,然而Dr. Dre無法證明消費者會因而被混淆、誤導,進而去購買Dr. Drai的商品。該意見書更指出,由於Burch醫生的演講費用是5000元美金,比起購買一般物品,消費者在購買Burch醫生的書籍或演講門票時會付出「較高的注意程度」。Burch醫生也辯稱,消費者不太可能會混淆這兩個商標,因為「Dr. Dre並非醫生,也沒有資格提供任何醫療服務或銷售醫藥、保健產品。」他更證稱從未想要利用Dr. Dre的名聲謀取利益,因Dr. Dre創作的歌詞顯示出其對某些族群的歧視,若消費者將他與Dr. Dre聯想,只會認為他是一位不好的醫生。 基於上述理由,委員會最後駁回歌手Dr. Dre的異議。Dr. Dre的律師James Weinberger目前對此案拒絕做出評論,也不願透漏是否會再提出上訴。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」