歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。

  該指引並進一步指出人工智慧應遵守以下四項倫理原則:

(1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。

(2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。

(3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。

(4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟執委會提出「具可信度之人工智慧倫理指引」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8236&no=16&tp=5 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

美國明尼亞波利斯市禁止政府部門使用人臉辨識技術

  美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。   新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。   明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。

美國音樂授權平台營運觀察─以BMI為例

美國音樂授權平台營運觀察─以BMI為例 資策會科技法律研究所 法律研究員 丘瀚文 104年10月22日 壹、前言   我國著作權法採「創作保護主義」[1],於著作完成之時,立即取得著作權保護,惟亦因如此,實務上難以證明何人為著作權人,常使利用人鋌而走險非法使用著作,使我國著作權流通、發展受到限制。如何讓著作人可以安心授權著作、利用人得以透過合法授權管道,簡單的取得授權,國外已有透過建立著作權授權平台來解決問題的先行實例。本文為研析我國著作權授權平台可行之營運方式、授權契約、費用計算方式,故觀察分析美國第二大音樂授權平台Broadcast Music Inc.(以下簡稱BMI),之特色,希望對我國著作權授權平台建立,有所助益。 貳、BMI音樂授權平台介紹 一、BMI音樂授權平台介紹   American Society of Composers Authors and Publishers(以下簡稱ASCAP)是美國最大的音樂授權平台,自1914年成立以來,凡是以公開播放方式利用音樂著作皆須向ASCAP支付授權費用,長久壟斷音樂授權市場[2]。在1940年ASCAP大幅提高授權費用後,以美國廣播協會為首廣播業者,為了因應ASCAP之調整價格,便聯合了500多家廣播公司自行組織了BMI進行抵抗,並蒐集大量非ASCAP管理之音樂供廣播業者利用,但由於後續運作獲得許多利潤,因而繼續經營。   美國司法部於1941年對ASCAP提出反托拉斯訴訟,結果達成和解,之後又於2001年司法部再度與ASCAP達成協議,完成了第二最終修正裁判(Second Amended Final Judgement),該協議讓司法部得藉司法監督,去控制ASCAP授權音樂費率於一定額度內,使BMI跟ASCAP能維持競爭關係。上開原因使BMI能慢慢發展成美國第二大音樂授權團體。 二、BMI授權方式觀察   BMI授權方式分為兩種,一為非即時性授權契約,其提供著作利用人定型化授權契約,但需經由傳真、客服確認時間,故不具有授權即時性;此一類型又區分為概括授權和單一節目授權兩種形式;二為即時性線上授權契約,利用BMI自行創設之數位授權中心,經線上填入資料、金融轉帳後,即可立即獲得授權,惟目前依網頁介紹觀察,授權對象僅限網站[3]。下列即分述兩種授權方式。 (一)非即時性授權契約   BMI非即時性授權契約分為媒體授權合約(Media Licensing)和一般授權契約(General Licensing)等兩大類型,媒體授權合約主要以公開播放業者為授權交易對象,並區分概括授權與個別節目授權;概括授權即繳納年費後不限次數使用,而個別節目授權則限定特定節目使用,如需在其他節目使用則需另外繳納授權費。   一般授權契約對象則多是廣播以外其他行業,如遊樂園、舞廳、餐廳、政府機關、健身俱樂部、手機…等,其使用授權費率皆不同,利用人填入行業內容後,該授權系統會線上提供與該行業相關授權契約內容供利用人參考,利用人填寫後可上傳至BMI管理中心即可完成授權作業[4]。不過亦非所有行業BMI均提供授權契約範本,仍有部分如餐館等,尚需使用人自行連絡BMI代理人方得進行授權。   以零售商(Retail Establishments)為例,本文登入BMI授權系統,並點選「Apply for License」按鈕,即出現下載授權契約選項,其內容包含[5]:有人對使用方提出訴訟,其訴訟標的關於BMI所提供授權服務,BMI將會負責損害賠償部分。使用人若想結束或轉讓生意,應於30日email至licensing @bmi.com,BMI會將授權金額重新計算,並寄送於使用人。   費用計算上BMI對每個行業皆有不同「計算基準」,據此計算出授權費用。例如零售商是以「場地大小」為計算基準;2000平方英呎以下零售商撥放一般音樂,授權費用為一年為227.6美元,播放具有視覺性音樂(MV),授權費用為一年307美元。計算基準是隨行業不同而有所變化,例如健身房則與零售商相異,其一年最少費用為311美元,費率亦非以「場地大小」單價計算,而是用「會員數量」作計算基準,並區分音樂是否使用於健身課程,而有不同費率;用於健身課程則一個會員0.279美元,非用於健身課程則一個會員0.195美元[6]。   最後,申請人應將此一表格掃描後做成電子檔,並藉由BMI網頁的上傳功能,上傳至BMI管理中心,中心審核後並確認匯款無誤,即會通知申請人開放授權[7]。 (二)即時性線上授權   BMI即時性線上授權是透過「數位授權中心」(Digital Licensing Center)進行,和非即時性一般授權契約不同,著作利用人只須登入該系統,線上填妥相關利用資訊,並以信用卡、線上轉帳等方式給付授權費用,即得線上完成與BMI締結授權契約程序。BMI將此一授權方式簡化為線上處理,避免授權契約雙方往返溝通繁雜手續,並具有即時性,是更為便利的交易模式。 x數位授權中心有兩種計價方式,總收入計算法與網頁流量計算法。總收入計算法是將網站一定比例收入計算為音樂授權金額。網頁流量計算法則是依據網頁上的流量為基準計算音樂授權金額[8]。而BMI將網站使用區分為三類:1.音樂網站2企業網站3.非營利網站,三者會讓使用者選擇計價方式不同。   舉例來說,企業網站、非營利網站關於音樂使用,其音樂使用與網站業務目的無關,音樂使用僅為提升形象,故不宜使用總收入計算法,應採網頁流量計算方式會較為節省[9]。簡言之,音樂使用與網站業務目的相關,則多使用總收入計算法,使用音樂與網站業務目的無關,則多使用網頁流量計算法。而網站可對財政報告進行分析,並選擇最經濟的方案,並可在一年中進行四次的變更,以符合網站商業運作模式。 參、結論   藉由觀察國外著作權平台授權方式並參考營運模式,對於我國類似平台建置營運提出三點或許可以借鏡之建議: 一、依行業區分不同授權標準   BMI之授權契約多樣化,並以行業做為區分標準,滿足不同需求,此區分各種行業不同收費方式,值得借鏡。例如廣播業者與零售商播放音樂軟體,使用權利雖可能皆為公開播送權,但播放時間、地點、影響程度可能皆不相同,如一律依使用權利態樣定收費標準,似有失公平,應可參考BMI以行業區分授權契約種類模式。 二、即時性線上授權   BMI將授權契約區分為即時性授權契約與非即時性授權契約,而即時授權對於使用人而言,較為方便,我國則可考慮以即時線上授權為基礎,並將對象擴張至一般行業皆能運用。 三、費用計算方式   BMI即時線上授權收費方式區分為總收入計算法與網頁流量計算,在授權對象為網站時,給予多重選擇,例如使用者為一般網站時,網頁流量計算法是對其比較有利的。這種費用的計算方法,讓使用人可依據網站業務不同,選擇利益最大化之優點,增加了使用人使用平台誘因,故此方式值得借鏡。   綜上,BMI之授權方式與契約內容、經營方式有獨到之處,可成為我國著作權平台建立之參考範本,使著作得以順利流通,促進我國產業發展。惟各式授權契約擬定,除有賴大量契約範本蒐集方得完善,授權費用如何設定仍是未來類似平台建置營運必須透過交易經驗與資料統計分析始能克服之難題。 [1] 著作權法第10條:著作人於著作完成時享有著作權。 [2] Music Licensing History,National Religious Broadcasters Music License Committee,http://www.nrbmlc.com/music-licensing/music-licensing-history(last visited Sep. 8, 2015). [3] BMI,https://apps.bmi.com/licensing/nmwebsite.jsf(last visited Aug. 12, 2015). [4] Musuc Users,BMI,http://www.bmi.com/licensing(last visited Aug. 12, 2015). [5] Music License For Retail Establishments,BMI,http://www.bmi.com/forms/licensing/gl/rtl.pdf (last visited Sep. 12, 2015). [6] Music License For Fitness,Clubs,BMI, http://www.bmi.com/forms/licensing/gl/fit1.pdf,(last visited Sep. 8, 2015). [7] BMI,http://www.bmi.com/digital_licensing(last visited Sep. 8, 2015). [8] 例如來站人次、瀏覽人數。 [9] BMI,http://www.bmi.com/digital_licensing(last visited Aug. 11, 2015).

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP