北美證券管理協會(North American Securities Administrators Association,簡稱:NASAA)與會成員,針對使用新興科技之不當行為人,於2018年10月10日發佈正式報告(NASAA 2018 Enforcement Report),報告指出不當行為人試圖使用新興金融商品刺激市場,使市場呈現活絡狀態。例如:炒作比特幣,該產品從2017年7月約2,364塊美元至同年12月大幅提高至2萬美元,同一時間於市場中加密貨幣市值飆漲超過5千億美元。因各種數據指標不正常的起伏,相關執法單位開始進行實際執法行動,並且特別針對加密貨幣部分進行調查。
該報告指出,部分合法企業也會透過加密貨幣和區塊鏈等,衍生性金融商品募集資本,亦即以首次代幣發行(Initial Coin Offering,簡稱ICO)之方式籌措資金。而NASAA也於監管時發現未經登記之企業,也利用此種方式進行籌資。惟,監管機構無法針對未經登記之公司進行有效之監管行為,以致,投資市場中詐欺事件層出不窮。因此,就涉嫌以ICO和加密貨幣等衍生性金融商品,進行群眾募資的未經合法登記之公司,NASAA也開始採取必要法律措施,以保護投資大眾免於受害。
一、 德州證券委員會與國家執法單位合作,於2017年12月20日對Usi-Tech Limited採取了緊急行動,此執法行動主要係因該公司以詐欺之方式欺騙投資消費者,此為國家執法單位,首次針對市場詐欺行為所進行之強制手段。
二、 北卡羅來納州證券部門以及德州證券委員會,調查BitConnect’s對加密貨幣貸款計畫之投資。該機構向投資者承諾,購買加密貨幣貸款計劃的投資將使他們有權在指定期限內獲取每月超過40%的利息,並且額外每日計算利率給予投資者。 調查後,監管機構發現,該公司未依證券交易法,以及證券經銷商相關註冊之規定,進行募資行為。以致北卡羅來納州證券部門以及德州證券委員會,隨即發佈停止運作之命令。
報告顯示,合法企業以及未經登記之企業,都得以使用ICO方式進行籌資。惟監督機構僅能就合法企業進行監管,無法有效監督未經登記之企業,為避免投資大眾因資訊不透明或資訊不對等之情況發生,導致投資人因此遭受到詐欺行為而受害。有關當局也已展開實際執法行動,仍請投資大眾多加注意。
美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
OTT影音發展與著作權-以英國為例 Palm支付2.25億美元與Xerox達成專利侵權和解由於 Palm 採用 3C om 的手寫辨識技術,於 1997 年遭 Xerox 控訴侵犯其在 1997 年所取得的 Unistrokes 專利權, Xerox 要求 Palm 支付 Graffti 的使用權利金,否則便應停止在其 PDA 中使用此項技術。此案於今年 (2006) 6 月 28 日 經 紐約西區美國地方法院法官 Michael Telesca 判決 Palm 的 Graffiti( 手寫辨識軟體 ) 的確已侵害到 Xerox 權利。 Palm 同意支付 2.25 億美元以取得 Xerox 手寫辨識軟體的合法授權使用權,結束 1997 年以來長達 9 年的法律訴訟。事實上, Xerox 在 1997 年是控告後來被 3Com 收購的 U. S. Robotics 公司, 但 這家公司之後被 3Com 買下,後來 3Com 再將其獨立 成立 Palm Inc ,當時 Palm 將 Graffiti 技術嵌入旗下的 Pilot PDA 中,也把使用了 Graffiti 技術的軟體賣給其他 PDA 製造商。 這次 Palm 所支付的費用涵蓋了 Palm Inc 、 PalmSource 及 3C om ,這三家業者均取得 Unistrokes 及 Xerox 其他兩項技術的專利的授權。雙方的協議包括 7 年的「專利和平」( patent peace )期,在這期間內允許合理使用談定的專利,而且不再互控對方。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)