為推動研發制度的改革並強化研發能力及效率,日本於2018年12月14日通過法律修正案,將原《研發力強化法》(研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律)更名為《科技創新成果活用法》(科学技術・イノベーション創出の活性化に関する法律),透過調整大學、國立研究開發法人(以下簡稱研發法人)的研究人員僱用制度、國家或人民安全相關研發預算的確保,以及研發法人投資科技研發成果之運用等相關制度的調整,以支持未來日本在科技創新研發能力的提升,以及研發成果的有效運用。
本次修法最大的重點,為研發法人投資研發成果運用的明文化,過去在《研發力強化法》中,僅規定研發法人得進行有助於成果運用的出資或技術協助等業務(第43條之2),但對於是否能保有因出資或技術協助所取得之收入(例如股票),則由各研發法人以其設置法另為規範;本次修正之《科技創新成果活用法》,則於第34條之5明文規定研發法人不受獨立行政法人不得持有股票的限制,可持有其運用研發成果進行技術作價投資或成立新創,所取得之股票或新股認股權,確立研發法人在支持研發成果運用上的功能與角色。
本文為「經濟部產業技術司科技專案成果」
根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。 即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。 例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。 依據BIPA針對生物辨識定義及蒐集規範: 1.第10條: 生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。 2.第15條(a): 規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。 3.第15條(b)(1): 蒐集生物辨識資訊應告知當事人。 Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。 觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。
日本政府對於「小型無人機進階安全確保制度」進行研議,並研提「航空法」修正建議日本政府於2016年1月5日成立「小型無人機進階安全確保制度設計相關小組委員會」(小型無人機の更なる安全確保のための制度設計に関する分科会),聚焦無人機飛安方面之實務議題。會議由内閣官房内閣参事官擔任議長,並由國土交通省航空局協助辦理,民間參與者則多為相關產業公協會,目前規劃每兩個月開1-2次會議,其運行方式包括:原則上為非公開會議,其會議資料將於會後公開,但若議長認有必要,則得決定一部或全部不公開;此外,對於委員會成員以外的民間企業及專家學者之意見,亦應聽取。 為更進一步確保小型無人機於飛行時之安全性,本次會議對「航空法」提出如下修正建議: (1)除「航空法」第一百三十二條之二所規範之飛行方式及禁飛區域外,尚有其他相關飛安重要事項亦應注意,例如:機體本身之缺陷、操控者失誤、不可預期的天候變化、機體重量等(一定重量以上之無人機,對於機體性能及操控者技術應有更高要求,未來可思考訂定罰則或提供擔保)。 (2)對於機場周邊應有比現行法更嚴格之規範,除因此處操控無人機容易誤入禁區外,該範圍以內通常是飛安事故搜救區,恐妨害搜救之進行。 (3)關於禁區內飛行許可之審查,應包含:機體機能與性能、操控者知識、技術與經歷。 (4)對於商業、營業用無人機,應有更高的安全性要求。但何謂商業、營業用之定義及更高安全性究何所指須有更明確的標準!
歐盟個資保護委員會公布GDPR裁罰金額計算指引歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。
北歐能源科技觀點報告討論建築能源效率等為達碳中和所採措施