新德國包裝法簡介

  為有效降低包裝廢棄物對環境造成的汙染及不利影響,使製造商履行其B2C(business to customer)產品責任,德國以新的包裝法(Packaging Act, VerpackG)取代現行的規範(Packaging Ordinance,VerpackV),並已於2019年1月1日生效。

  新包裝法VerpackG不同於VerpackV之處,在於除要求業者須加入原有的回收系統外,另授權Zentrale Stelle(Stiftung Zentrale Stelle Verpackungsregister,ZSVR)基金會作為新包裝法強制登記制度的執行單位,規範欲在德國銷售產品包裝之所有實體或網路製造商及零售商,有義務於ZSVR的數據資料庫”LUCID”註冊,才能在德國地區進行銷售,並且為全面提升透明度,乃規範於LUCID註冊之商家資訊皆屬可供大眾公開查詢。

  依VerpackG規定,於2019年1月1日起未為註冊的商家,其包裝商品不能在德國上市,否則恐將臨100,000歐元之罰款;另未加入回收系統之商家,恐面臨200,000歐元之罰款。而除須註冊與回收系統的加入外,製造商及零售商尚須將以下之包裝相關資訊提供給ZSVR做比對:

(一)註冊號碼(商家於資料庫註冊時,由ZSVR所提供之註冊號碼)

(二)包裝材料及容積

(三)製造商履行生產者延伸責任(Extended Producer Responsibility)簽訂的包裝方案名稱

(四)與回收公司或回收系統間簽訂之契約期限

資料來源:自行繪製
圖 德國包裝法實施步驟

相關連結
相關附件
※ 新德國包裝法簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8272&no=64&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

美國重啟核電廠興建,並鼓勵小型核能反應爐創新技術研發

  美國雖將能源列為國家長期的能源政策目標,自1990年代後期,亦投入核能的安全性、環境建置及研發補助等,但最近因將重點放在其他替代性能源的開發,因此在核能方面的計畫稍微減少,尤其自1979年美國三哩島核電廠(Three-Miles Island Nuclear Generating Station)發生事故後,美國三十年來未再興建任何核電廠。但由於核能發電的高效率與不會排放二氧化碳的低污染,因此美國政府將之列為重點發展項目,強調美國政府的能源政策是要發展任何可能的能源,包括合核能,以提升在全球潔淨能源的競爭優勢。   美國總統歐巴馬表示,為了維持能源供需的穩定,以及避免氣候的惡劣變遷,有必要重啟美國核能產業,持續提高核能的供應量。因此於2011年12月經核子管理委員會(Nuclear Regulatory Commission)通過、2012年2月再次於投入核電廠的興建,於喬治亞洲Vogtle核電廠核准興建兩座新的核能反應爐,並透過成本分擔協議(cost-share agreement)投入2億美元,協助設計認證及許可。   此外,並於同年3月宣布投入4. 5億美元於五年內支持兩座自製的小型核能反應爐(small modular nuclear reactor,SMR)的設計、認證及核准,希望能輸出這些自製的反應爐,提升全球潔淨能源的競爭力。這些反應爐約只佔核能廠的三分之一面積,具有安全的建築設計,小型反應爐能在工廠內製造,並運輸到定點安裝,能節省成本及建造的時間。且其最理想的地方在於其體積小,能使用在小型智慧電網級一些無法容納大型反應爐的地方,其運用能更有彈性,能增加經濟效益。   國政府希望透過與私人企業的合作,帶領美國在全球核能科技及製造的領先地位。因此希望能源部希望此計畫能經核子管理委員會的許可,此一小型核能反應爐的計畫總金額為9億美元,透過與私人企業成本分擔的協議,其中50% 由國會撥款,另50%則由私人企業投資,並於2022年商業化,取得在全球潔淨能源的競爭優勢地位。

英國發布國家資料戰略(National Data Strategy)

  英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)於2020年9月9日發布「國家資料戰略」(National Data Strategy),作為英國規劃其政府資料流通運用的整體性框架。數位、文化、媒體暨體育部長Oliver Dowden表示,資料為驅動現代社會經濟發展的關鍵。於今年COVID-19的全球疫情流行期間,政府、企業、組織等彼此及時共享重要資訊,除達成了防疫目標,更維繫了各層面的經濟生活。因此,本戰略則規劃活用此段期間獲得的知識與經驗,試圖透過資料的釋出流通與運用,讓英國經濟自COVID-19疫情中復甦,提高生產力與創造新型業態,改善公共服務,並使之成為推動創新的樞紐。   為優化英國資料的運用,本戰略提出了四個核心面向:(1)資料基礎(data foundation):資料應以標準化格式,且符合可發現(findable)、可取用(accessible)、相容性(interoperable)與可再利用(reusable)的條件下記載;(2)資料技能(data skills):應藉由教育體系等培養一般人運用資料的技能;(3)提升資料可取得性(data availability):鼓勵於公共、私人與第三部門加強協調、取用與共享具備適切品質的資料,並為國際間的資料流通提供適當的保護;(4)負責任的資料(responsible):確保各方以合法、安全、公平、道德、可持續、和可課責(accountable)的方式使用資料,並支援創新與研究。   基此,本戰略進一步提示了五個優先任務:(1)釋出資料的整體經濟價值:建立適切的條件,使資料在經濟體系內可取得且具備可取用性,同時保護私人的資料權(data rights)、以及企業的相關智慧財產權;(2)建構具發展性且可信賴的資料機制:協助企業家與新創人士以負責任及安全的方式使用資料,避免產生監管上的不確定性或風險,並藉以推動經濟發展。同時,也期待藉由機制的建立,鼓勵公眾參與資料的數位經濟應用;(3)改變政府運用資料的方式,提升效率及改善公共服務:以COVID-19疫情期間政府對資料積極運用為契機,推動政府間的整體資料有效管理、使用與共享措施,為相關作法建構一致性的標準與最佳實踐方式;(4)建立資料基礎設施的安全性與彈性:資料基礎設施為國家關鍵資產,應避免其遭遇安全或服務中斷的風險,進而導致資料驅動的相關業務或組織服務中斷;(5)推動國際資料流(international flow of data):與國際夥伴合作,確保資料的流通運用不會因各地域的制度不同,而受到不當限制。

歐盟執委會通過「歐洲創新議程」,加速深度技術創新並資助新創事業

  歐盟執委會(European Commission, EC)於2022年7月5日通過「新歐洲創新議程」(New European Innovation Agenda,下稱創新議程),藉由引領創新,特別是在「深度技術」(Deep Tech),例如AI、量子科學、光子技術等領域之創新,強化歐洲在綠色轉型和數位轉型的中心角色,並為氣候變遷及網路威脅等迫切的社會問題,提供創新的解決方案,以減少能源依賴、改善民眾健康,並繁榮歐洲經濟。創新議程包括以下5項旗艦項目: (1)資助新創公司(start-ups):使歐洲私人機構及其他私人投資者更願意投資於「深度技術」之新創公司。除此之外,簡化上市規則,使公司上市成本減少,以增加公司上市意願,更易於向公眾募集資金。 (2)重視實驗場域及創新採購:讓創新的企業可藉由「監理沙盒」(Regulatory Sandbox)等實驗場域(experimentation spaces)驗證其概念,政府則加強對創新產品和服務的公共採購(public procurement),促進創新研發。 (3)打造歐洲創新生態系(European Innovation Ecosystems):支持包括低度開發地區在內的區域,建立多個「區域創新谷」(regional innovation valleys),以強化歐洲創新者間的連結,並促進會員國投入至少100億歐元於各區域創新谷包含「深度技術」在內的創新專案。 (4)育才、攬才及留才:確保「深度技術」的人才能來到歐盟國家,並在歐盟國家間流動及發展,當中包括針對新創公司的創新實習生計畫、幫助新創公司尋找非歐盟人才的歐盟人才資料庫(talent pool)計畫、女性創業和領導計畫、新創公司員工有認股權(stock option)等。 (5)優化政策制定之流程及架構,促進歐盟內部協調一致:藉由開發可供各國比對的資料集(data set),以及對於新創公司設立階段(start-up)及成長階段(scale-up)之共通定義,提升並強化政策的傳播及落實,並確保在歐洲創新理事會論壇(European Innovation Council)有更好的政策協調。

TOP