特別301報告

  特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。

  美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含:

  1. 世界各國智財權保護以及執法有效性;
  2. 網路銷售各種盜版及仿冒商標之商品情形;
  3. 世界各國貿易壁壘(market access barriers),例如貿易市場不透明、歧視性、或其他限制貿易的措施等,是否妨礙取得醫療保健(healthcare)或其他受智財權保護的資訊。

  2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 特別301報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8277&no=67&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國民權辦公室發布遠距醫療隱私和資訊安全保護相關建議

美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)民權辦公室(Office for Civil Rights, OCR)於2023年10月18日發布了兩份文件,針對遠距醫療情境下的隱私和資訊安全保護,分別給予病人及健康照護服務提供者(下稱提供者)實務運作之建議。本文主要將發布文件中針對提供者的部分綜合整理如下: 1.於開始進行遠距醫療前,提供者應向病人解釋什麼是遠距醫療及過程中所使用的通訊技術。讓病人可瞭解遠距醫療服務實際運作方式,若使用遠距醫療服務,其無須親自前往醫療院所就診(如可以透過語音通話或視訊會議預約看診、以遠端監測儀器追蹤生命徵象等)。 2.提供者應向病人說明遠距醫療隱私和安全保護受到重視的原因。並且向病人告知為避免遭遇個資事故,提供者對於通訊技術採取了哪些隱私和安全保護措施,加以保護其健康資訊(如診療記錄、預約期間所共享資訊等)。 3.提供者應向病人解釋使用通訊技術對健康資訊帶來的風險,以及可以採取哪些方法降低風險。使病人考慮安裝防毒軟體等相關方案,以防範病毒和其他惡意軟體入侵;另網路犯罪者常利用有漏洞之軟體入侵病人裝置,竊取健康資訊,因此可於軟體有最新版本時,盡快更新補強漏洞降低風險;若非於私人場所預約看診,病人則可透過調整裝置或使用即時聊天功能,避免預約資訊洩漏。 4.提供者應協助病人保護健康資訊。確保病人知悉提供者或通訊技術供應商聯絡資訊(如何時聯絡、以什麼方式聯絡等),使病人遭網路釣魚信件或其他方式詐騙時可以加以確認;也應鼓勵病人有疑慮時都可洽詢協助,包括如何使用通訊技術及已採取之隱私和安全保護措施等。 5.提供者應使病人了解通訊技術供應商所採取之隱私和安全保護措施。告知病人通訊技術供應商名稱、採取之隱私和安全保護措施,及如何得知前開措施內容;使病人了解進行遠距醫療時是否使用線上追蹤技術。 6.提供者應告知病人擁有提出隱私投訴的權益。若病人認為自身健康隱私權受到侵犯,得透過OCR網站進行投訴。

英國發布《資料主體近用權指引》說明資料近用權法遵重點及實例解析

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年10月21日發布《資料主體近用權指引》(Guidance of Right of access),針對資料主體行使資料近用權之請求(Data Subject Access Request, DSAR),受請求之機構應如何進行識別判斷、簡化處理方式,以及特殊例外情況等法遵重點提供指導方針,並進行實例說明解析,以幫助受請求之機構在面臨資料主體之近用權請求時能快速且有效的處理。   英國「個人資料保護法」(The Data Protection Act 2018)依據歐盟「一般資料保護規則」(GDPR)於2018年重新修訂,其中資料近用權更是對於資料主體相當重要的基本權利,進而影響受請求之機構必須了解如何有效率的處理資料近用權之請求,並確實履行其在法規上所要求的保護義務,主要分為三點: 在資料主體確認其資料近用權所欲請求的範圍之前,受請求之機構依法應回覆時限應予以暫停,以利受請求之機構能有更充裕完整的時間釐清及回應資料主體之近用權請求。 為了避免受請求之機構耗費大量時間判斷何謂「明顯過度之請求」(manifestly excessive request),該指引提供相關定義說明及判別標準。 針對「明顯過度之請求」收取處理費用所包含的項目,例如受請求之機構處理請求所增加人力行政成本,在受請求之機構收取處理費用時可將其納入斟酌。

新加坡國家研究基金會推出AI.SG計畫,促進人工智慧技術發展

  新加坡國家研究基金會(National Research Foundation,以下簡稱NRF)於2017年5月3日宣布AI.SG倡議,並將啟動國家級AI計畫。NRF將於五年內投資新加坡幣1.5億元,整合NRF,智慧國家與數位政府辦公室(Smart Nation and Digital Government),經濟發展委會(Economic Development Board),資通訊媒體發展局(Infocomm Media Development Authority),新加坡創新機構(SGInnovate)及整合健康資訊系統(Integrated Health Information Systems)等數個政府部門,以及位於新加坡的研究機構、AI新創公司與發展AI產品的企業等共同投入。計畫三大目標如下: 利用人工智慧來解決影響社會和產業的重大挑戰   這些應用包括利用人工智慧解決交通尖峰時段壅塞問題,或應付人口老齡化帶來的醫療保健挑戰。IHiS執行長兼衛生部資訊長Mr.Bruce Liang表示:「醫療照護是需要高度知識及人性化的行業。多年來從新加坡在醫療照護數位化的發展中,可預見AI未來對於提升新加坡人民健康有很大幫助。例如在疾病預防、診斷、治療計畫、藥物治療、精準醫療、藥品開發等方面皆可發揮作用。醫護人員再加上AI工具,可以更完善解決未來對於醫療照護需求的增加。」 投入並深化技術能力,以掌握下一波科技創新   其中包括可展現更多人類學習能力的下一代「可解釋的人工智慧」 (Explainable Artificial Intelligence,XAI),以及相關技術,例如電腦系統架構(軟體、韌體、硬體整合)和認知科學(Cognitive Science)。NRF獎助金和研究計畫將會支持相關科學活動。當地人才也將透過參與AI深度功能的開發進行培訓。 擴大產業對於AI和機器學習的使用   AI.SG將與公司合作,利用AI來提高生產力,創造新產品,並輔導相關解決方案從實驗室進入市場。目標將支持100個AI研發項目和概念驗證,以利用戶能快速解決實際問題。並預計針對金融,醫療照護和城市管理解決方案領域具有特殊的潛力者先著手進行。   AI.SG計畫此項推動工作,未來不僅將可激發新加坡的研究人員和用戶利用AI解決社會重大問題,也將影響全世界渴望利用人工智慧技術帶來更便利的生活,值得我國相關機關推動政策之參考依據。

TOP