特別301報告

  特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。

  美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含:

  1. 世界各國智財權保護以及執法有效性;
  2. 網路銷售各種盜版及仿冒商標之商品情形;
  3. 世界各國貿易壁壘(market access barriers),例如貿易市場不透明、歧視性、或其他限制貿易的措施等,是否妨礙取得醫療保健(healthcare)或其他受智財權保護的資訊。

  2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 特別301報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8277&no=67&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

新加坡政府推出民眾資料共享平台MyInfo

  新加坡政府在2016年05月05日發表了數位平台「MyInfo」。   新加坡政府推出此一平台的目標是「以數位方式來整合目前的工作,去除現行的不便與散亂,讓民眾與政府打交道時更輕鬆 」。因此,「MyInfo」將每個新加坡公民散在各政府機關間的個人資料整合成單一檔案,使用者也可以自行決定加入額外的資訊,像是年收入、教育程度、就業情況以及家人資料。當民眾需要填寫不同的政府表單時,不需要再一直填寫重複的內容。   新加坡政府表示,每個公民可以自由決定他們要不要註冊MyInfo。當使用者選擇使用這項服務時,相關機關會針對可能被運用的資料先徵詢使用者的同意。   MyInfo計畫是由新加坡財政部與資訊通信發展管理局共同發起。新加坡政府的數位服務團隊在一年前左右開始設計這項服務,目前平台上仍持續在測試並改善使用者經驗。   MyInfo從2016年01月到04月試營運,已經有超過32,000人使用這項服務(佔新加坡總人口0.6%)。在2016年06月之前,MyInfo會提供15項服務,包括註冊公用住宅、更新報稅資料以及求職資訊等。到2018年,所有需要雙認證的數位服務都會整合在MyInfo平台,估計會有200項服務項目。   這個計畫是新加坡「數位政府」(Digital Government)政策的重要拼圖之一。新加坡政府將持續擴大MyInfo的服務項目,希望藉由此服務來蒐整更多資料,並增加可供政府機關間分享的個人資料數目。伴隨愈加豐富的數據資料,各政府部門更能事先了解民眾的需求並提出民眾真正需要的服務。

台南市低碳自治條例與國際促進能源效率立法趨勢

台南市低碳自治條例與國際促進能源效率立法趨勢 科技法律研究所 2013年3月26日 壹、事件摘要   根據自由時報3月5日報導,台南市為將該市打造為國際指標性之低碳城市,在去年制訂了「台南市低碳城市自治條例」,並在未來規劃對大建築面積、及用量超過800千瓦之用戶,要求必須裝置一定比例太陽光電系統的強制規定。該條例同時要求公有、及供公眾使用的建築物,須為銀級以上綠建築之規定,亦在近日吸引了媒體的關注。 貳、重點說明 一、臺南市政府低碳城市自治條例   台南市政府於2012年12月22日以府法規字第1011084760A號令公布了「台南市低碳城市自治條例」,共六章、三十八條,並於第四章「低碳城市推動與管理」,做了前述對耗電大的用戶為一定比例太陽能光電系統設置要求之規範。   在綠建築的部分,依據該條例第21條第1款之規定,台南市公有或經該市公告指定地區之新建建築物於申請建造執照時,若非供公眾使用之建築物,須為合格級以上之綠建築。而公有及供公眾使用之建築物,則須進一步符合為銀級以上之綠建築。此策略採取賦予公部門較高的法規遵循義務,與國外立法例趨勢相當吻合。詳述如下。 參、事件評析 一、國外立法例 (一)從一定面積以上面積建築著手   根據自由時報的報導,台南市政府在未來將針對大建築面積用戶,強制其裝設用電量一定比例的太陽光電系統。關於面積的細部規範雖然未見於該市低碳自治條例,但此一規劃無疑符合國際間為提高節能效率所採取的規範趨勢。   例如美國在2007年能源獨立及安全法架構下,由總統在2009年所發佈的行政命令第13514號的第2條第g項第3款,即要求確保既有聯邦建築或聯邦機構(agency)所承租之建築,面積超過5000平方英呎者,應在財政年度2015年前,使其面積的15%完全符合「聯邦永續建築指導原則」(Federal Leadership in High Performance and Sustainable Building, 在該行政命令中簡稱 Guiding Principle)。   而新加坡也有類似的規範。根據該國「2008年建築管制(環境永續)規定」(Building Control《Environmental Sustainability》2008)第3條與第4條之規定,所有總樓板面積(gross floor area) 超過2,000平方公尺的建築之建設或有關總樓板面積超過2,000平方公尺既有建築之面積增建(increasing the gross floor area),或關於建築外殼或建築服務的提供、擴大或實質的改變,皆應至少達到依據建築環境永續規範(Code for Environmental Sustainability of Buildings)的綠色標誌積分(Green Mark scores) 50分。 (二)對公部門採取較民間更高標準   由前述關於南市低碳自治條例中關綠建築之規範可知,該市在為相關管制的規劃時,所採取的政策是讓公部門先承擔較高的法規遵循義務(在該條例第21條的規定中,公有建築物在申請建照時須符合銀級綠建築之標準,而不若一般非供眾使用之建築物,僅要求其須合格)。此種作法亦為國際間為引領民間部門推動節能減碳常見的法制政策規劃。   除了上述美國的規定也是先對公部門作要求外,歐盟能源指令第5條第1項也有類似之規範。該條款要求歐盟各會員國自2014年1月1日起,就其中央政府所擁有或佔有之面積超過500平方公尺之建築,每年應翻修總樓板面積的3%,使其至少符合建築效率指令(2010/31/EU, Directive on Energy Performance of Buildings)第4條關於最低建築能源效率(minimum energy performance requirements for buildings)之要求。 二、短評與小結   由上述介紹可知,台南市低碳自治條例,為促進節能減碳而採行諸如由一定面積以上建築物著手,並對公部門此取更高標準之規定皆與國際趨勢相符。無獨有偶,高雄市於去年通過的綠建築自治條例,也有類似規定。我國在各級地方政府皆能與國際接軌的共同努力下,能否在促進能源效率方面達成較歐美等先進國家更耀眼的成積,著實令人期待。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP