日本智慧交通挑戰計畫

  日本經濟產業省於2018年召開「IoT和AI可能衍生之新型態交通服務研究會」(IoTやAIが可能とする新しいモビリティサービス関する研究会),並於2019年4月公布「朝向新型態交通服務之活性化」(新しいモビリティーサービスの活性化に向けて)報告;國土交通省亦自2018年底起召開「都市與地方新型態交通服務懇談會」(都市と地方の新たなモビリティサービス懇談会),於2019年3月公布中間結果。經產省和國土省根據上述會議結論,自2019年4月起,發起支援地方政府挑戰推動新型態交通服務之新計畫「智慧交通挑戰」(スマートモビリティチャレンジ)。

  「智慧交通挑戰」計畫之目的,在於促使地方政府與企業合作,以實現自動駕駛社會,並透過新型態交通服務解決既有交通問題和加速地方活性化,其具體措施包括︰(1)透過設置「智慧交通挑戰推進協議會」及舉辦論壇,促進地方政府和企業間共享資訊,形成工作網路;(2)經濟產業省補助新型態交通服務實用化、計畫制定和效果分析等計畫;(3)國土交通省補助MaaS等新型態交通服務實驗,以及建構以解決地區交通服務為目的之模型等計畫。經產省與國土省分別自4月起對外公開募集提案,最終於75個提案中選出28個計畫,將於今年起陸續施行。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本智慧交通挑戰計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8282&no=64&tp=5 (最後瀏覽日:2025/05/19)
引註此篇文章
你可能還會想看
美國商務部、財政部以及司法部發布遵循美國出口管制與制裁規範聯合指引

美國商務部(Department of Commerce)、財政部(Department of Treasury)以及司法部(Department of Justice)於2024年3月6日發布出口管制與制裁法令遵循指引,以避免邪惡政權(malign regimes)與其他不法人士試圖濫用商業與金融管道,取得有危害美國國家安全與外交政策利益、全球和平與繁榮風險的貨品、技術以及服務,特別提供「非美國公司」(non-U.S. companies),降低相關風險的遵循指引。 該指引分享3則違反制裁法規的案例,重點如下: (1)某家總部位於澳洲的國際貨運代理和物流公司,運送貨品至北韓、伊朗以及敘利亞(皆為被制裁之目的地),且透過美國金融系統發起或收受交易款項,導致美國金融機構與被制裁之對象交易,並向受制裁的司法管轄區輸出金融服務。該公司最終繳納6,131,855美元罰款。 (2)某阿聯酋公司與杜拜以及伊朗公司共謀,透過在出口文件中將一家杜拜公司錯誤地列為最終使用人,然後從一家美國公司出口「儲槽清洗裝置」(storage tank cleaning units)到伊朗,構成違反出口管制規定行為。後與主管機關達成行政和解,繳納415,695美元罰款。 (3)某家總部位於瑞典的國際金融機構的子公司,因其客戶從被制裁的司法管轄區的IP位址,使用子公司的網路銀行平台,透過美國代理銀行向位於被制裁司法管轄區的交易對象付款,因此繳納3,430,900美元罰款。

英國政府制定監管計畫以應對科技巨頭帶來的問題

  英國政府於2022年5月6日宣布將針對大型企業(major firms)壟斷市場的情況制定新的監管計畫。該監管計畫將重新平衡大型與中小企業和消費者的關係,以利中小企業和消費者受到更好的保護,並使市場競爭環境更為公平。   該監管計畫針對的大型企業,即是國際市場上的科技巨頭(tech giants),如Google and Facebook。此類科技巨頭擁有並控制大量用戶的網路資料,並將該資料應用在特定應用程式與瀏覽器的搜尋演算法上,以確保其市場壟斷地位,使潛在的競爭者難以進入市場,進而影響市場的公平競爭以及消費者的自由選擇權。為解決前揭問題,英國預計透過修法賦予競爭和市場管理局下的「數位市場部門」(Digital Markets Unit, DMU)法定權力與監管權限,並搭配措施與作法如下: 強化市場公平性:英國政府預計提出價格糾紛解決機制,平衡內容提供商(如媒體業與廣告業)與科技巨頭間的議價能力,以確保更為公平、透明的市場。此外,科技巨頭亦應將其演算法之資訊分享給一般公司,避免科技巨頭濫用其市場力量。 增進消費者權益:科技巨頭必須確保消費者在使用資訊設備或服務時有充分的自主權與選擇權。例如,於手機的IOS和 Android 系統之間轉換或是社交軟體帳戶之間的資訊移轉時不會喪失其資料和訊息。DMU也將限制公司預先安裝瀏覽器、社交軟體等APP,讓消費者在APP上有更多選擇權。而隨著新業者進入市場,智慧型手機用戶將可以有更多搜尋引擎和社交平台選擇。此外消費者亦可選擇退出具有針對性的個人化廣告發送,以達成讓消費者擁有更多的資料自主權。   為能有效落實上述措施,DMU將有權指定特定企業為具有「戰略市場地位」(strategic market status)的公司。指定標準將依公司的營業額、對消費者的影響力、對市場活動的影響力、公司的活躍程度與規模等綜合評估,檢視其是否達到強大且根深蒂固的力量(substantial and entrenched market power)。DMU並將針對少數主導數位市場的企業應如何公平對待其用戶和其他公司提出行為準則。被指定的公司若違反相關規範,將面臨全球年營業額最高10%的罰款,如果連續違反,則可被處以全球每日營業額5%的額外罰款。   英國政府期待透過新的監管計畫及未來的修法介入市場競爭,促使市場環境更為公平且適於創新,同時讓消費者擁有更多選擇權。英國新監管計畫之實施情形,值得持續關注。

什麼是日本研究組合?

  所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP