Horizon Europe為歐盟2021-2027年之科技研發架構計畫。科技研發架構計畫(Framework Programmes for Research and Technological Development,依不同期別縮寫為FP1-FP8)為全球最大型的多年期科研架構計畫,今期之Horizon 2020已進入尾聲,2021年起所實施的歐盟科研架構計畫──FP9正式命名為「Horizon Europe」。
為打造歐盟成為創新市場先鋒,延續Horizon 2020計畫成效,Horizon Europe重視投資研發與發展創新,包含強化歐盟的科學與技術基礎、促進歐洲創新能力,以及永續歐洲社會經濟的模式與價值。
Horizon Europe發展方向分為三大主軸,分別為:
此外,Horizon Europe擬把實驗階段中具備高潛力和前瞻性的技術帶入市場,轉以任務導向協助新創產業設立,推動跨事業多方整合。
本文為「經濟部產業技術司科技專案成果」
美國職業安全及健康研究院﹙NIOSH﹚是美國發展奈米科技的重要政府單位之一。近來,其頻頻透過國際組織的運作來處理與奈米科技有關之職業安全與健康影響問題。NIOSH首長John Howard表示,在國際層次上,科學家及決策者皆明瞭處理與奈米材料製造及產業使用所引致之職業病或職災,是當下最重要的工作之一。而由於NIOSH在促進世界性科學對話上,始終扮演者厥功甚偉的角色,因而在奈米科技發展初期,其亦積極協助此一科技能夠充分考慮安全及健康問題,發展出具全球協調性的技術方法,並有助於美國在國際市場的領先地位。而其近期主要成就在於以下三個部分: 1.今﹙2007﹚11月29日,經濟合作暨發展組織﹙OECD﹚人造奈米材料工作小組通過NIOSH-Led計畫,負責執行奈米材料暴露控制與測量等相關資訊之交換,同時透過領導小組,與會員國共同聚焦商討一些足以引起公眾意識的議題,例如在職業環境中之暴露測量與減輕。 2.其次,在今年12月4日至同月7日的國際組織會議中,ISO TC229表決通過有關奈米科技在職業環境之安全與健康規範的報告初稿,此報告係以NIOSH所發表一份名為“Approaches to Safe Nanotechnology”的報告作為基礎,而繼續由其發展與修正。本報告初稿送至ISO技術委員會審查,委員會認為報告內容涵蓋完整的技術性工作,且其未來影響將遍及全球,而為全球組織所關切。 3.此外,在今年12月2日,NIOSH另參與世界衛生組織﹙WHO﹚之職業健康合作中心全球聯網會議,當次會議之焦點在於奈米科技,會中NIOSH代表負責報告工程奈米粒子在職業安全及衛生上所遭遇之挑戰現況。本次會議中將決定WHO合作機制如何發展運作,以避免暴露於可能有害的工程奈米粒子。 整體而言,關於奈米科技之安全與健康影響及其相關應用的研究,NIOSH統整建置了一套策略性工作計畫,透過這些研究專門處理一些重要問題,包括某些對於評估風險及控制暴露極為有效的科學資訊。除了研究之外,NIOSH亦積極參與國際組織活動,可以預見其對奈米科技未來發展之影響將無遠弗界。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
國家通訊傳播委員會第545次委員會議審議通過「因應數位匯流調整有線電視收費模式規劃」案 電子病歷之法源與病人隱私保護